Эконометрика

Автор работы: Пользователь скрыл имя, 27 Октября 2009 в 13:28, Не определен

Описание работы

Контрольная работа

Файлы: 1 файл

Образец к-р.doc

— 448.50 Кб (Скачать файл)

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ  
ИНСТИТУТ

Филиал  в г. Брянске 
 
 
 

КОНТРОЛЬНАЯ РАБОТА

по  дисциплине

ЭКОНОМЕТРИКА 
 
 
 

ВЫПОЛНИЛ(А) Симонова  Н.С.
СТУДЕНТ(КА) 3 курса («вечер», поток 1)
СПЕЦИАЛЬНОСТЬ Финансы и кредит
№ ЗАЧ. КНИЖКИ 06ффд15027
ПРЕПОДАВАТЕЛЬ Малашенко В.М.
 
 
 
 

Брянск  — 2009

ЗАДАЧА 1

      По  предприятиям легкой промышленности региона  получена информация, характеризующая зависимость объема выпускаемой продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.): 

№ предприятия X Y
1 22 26
2 48 52
3 31 43
4 36 38
5 43 54
6 52 53
7 28 35
8 26 37
9 42 47
10 59 58
 

      Требуется:

  1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
  2. Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
  3. Проверить выполнение предпосылок метода наименьших квадратов.
  4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости a=0,05).
  5. Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости a=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
  6. Осуществить прогнозирование значения показателя Y при уровне значимости a=0,1, если прогнозное значения фактора Х составит 80 % от его максимального значения.
  7. Представить графически: фактические и модельные значения Y, точки прогноза.
  8. Составить уравнения нелинейной регрессии:
      • логарифмической;
      • степенной;
      • показательной.

      Привести  графики построенных уравнений регрессии.

  1. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

РЕШЕНИЕ

      Для решения задачи используется табличный процессор EXCEL.

      1. С помощью надстройки «Анализ данных» EXCEL проводим регрессионный анализ и определяем параметры уравнения линейной регрессии (меню «Сервис» ® «Анализ данных…» ® «Регрессия»):

      (Для копирования снимка окна в буфер обмена данных WINDOWS используется комбинация клавиш Alt+Print Screen.)

      В результате этого уравнение регрессии будет иметь вид:

 (прил. 1).

      Угловой коэффициент b1=0,785 является по своей сути средним абсолютным приростом. Его значение показывает, что при увеличении объема капиталовложений X на 1 млн. руб. объем выпускаемой продукции Y возрастает в среднем на 0,785 млн. руб. 

      2. При проведении регрессионного анализа в EXCEL одновременно были определены остатки регрессии (i=1, 2, …, n, где n=10 — число наблюдений значений переменных X и Y) (см. «Вывод остатка» в прил. 1) и рассчитана остаточная сумма квадратов

 

(см. «Дисперсионный анализ» в прил. 1).

      Стандартная ошибка линейной парной регрессии Sрег определена там же:

 млн. руб.

(см. «Регрессионную статистику» в прил. 1), где p=1 — число факторов в регрессионной модели.

      График остатков ei от предсказанных уравнением регрессии значений результата (i=1, 2, …, n) строим с помощью диаграммы EXCEL. Предварительно в «Выводе остатка» прил. 1 выделяются блоки ячеек «Предсказанное Y» и «Остатки» вместе с заголовками, а затем выбирается пункт меню «Вставка» ® «Диаграмма…» ® «Точечная»: 

 

      График  остатков приведен в прил. 2. 

      3. Проверим выполнение предпосылок обычного метода наименьших квадратов.

      1) Случайный характер остатков. Визуальный анализ графика остатков не выявляет в них какой-либо явной закономерности.

      Проверим  исходные данные на наличие аномальных наблюдений объема выпускаемой продукции Y (выбросов). С этой целю сравним абсолютные величины стандартизированных остатков (см. «Вывод остатка» в прил. 1) с табличным значением t-критерия Стьюдента для уровня значимости a=0,05 и числа степеней свободы остатка регрессии , которое составляет tтаб=2,306.

      Видно, что ни один из стандартизированных  остатков не превышает по абсолютной величине табличное значение t-критерия Стьюдента. Это свидетельствует об отсутствии выбросов.

      2) Нулевая средняя величина остатков. Данная предпосылка всегда выполняется для линейных моделей со свободным коэффициентом b0, параметры которых оцениваются обычным методом наименьших квадратов. В нашей модели алгебраическая сумма остатков и, следовательно, их среднее, равны нулю: (см. прил. 1).

      Для вычисления суммы и среднего значений остатков использовались встроенные функции EXCEL «СУММ» и «СРЗНАЧ».

      3) Одинаковая дисперсия (гомоскедастичность) остатков. Выполнение данной предпосылки проверим методом Глейзера в предположении линейной зависимости среднего квадратического отклонения возмущений от предсказанных уравнением регрессии значений результата (i=1, 2, …, n). Для этого рассчитывается коэффициент корреляции между абсолютными величинами остатков и (i=1, 2, …, n) с помощью выражения, составленного из встроенных функций:

=КОРРЕЛ(ABS(«Остатки»);«Предсказанное Y»)

      Коэффициент корреляции оказался равным (см. прил. 1).

      Критическое значение коэффициента корреляции для уровня значимости a=0,05 и числа степеней свободы составляет rкр=0,632.

      Так как коэффициент корреляции не превышает по абсолютной величине критическое значение, то статистическая гипотеза об одинаковой дисперсии остатков не отклоняется на уровне значимости a=0,05.

      4) Отсутствие автокорреляции в остатках. Выполнение данной предпосылки проверяем методом Дарбина–Уотсона. Предварительно ряд остатков упорядочивается в зависимости от последовательно возрастающих значений результата Y, предсказанных уравнением регрессии. Для этой цели в «Выводе остатка» прил. 1 выделяется любая ячейка в столбце «Предсказанное Y», и на панели инструментов нажимается кнопка « » («Сортировка по возрастанию»). По упорядоченному ряду остатков рассчитываем d-статистику Дарбина–Уотсона

 (см. прил. 1).

      Для расчета d-статистики использовалось выражение, составленное из встроенных функций EXCEL:

=СУММКВРАЗН(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)

      Критические значения d-статистики для числа наблюдений n=10, числа факторов p=1 и уровня значимости a=0,05 составляют: d1=0,88; d2=1,32.

      Так как выполняется условие

,

статистическая  гипотеза об отсутствии автокорреляции в остатках не отклоняется на уровне значимости a=0,05.

      Проверим  отсутствие автокорреляции в остатках также и по коэффициенту автокорреляции остатков первого порядка

 (см. прил. 1).

(ряд  остатков упорядочен в той  же самой последовательности).

      Для расчета коэффициента автокорреляции использовалось выражение, составленное из встроенных функций:

=СУММПРОИЗВ(«Остатки 2, …, n»; «Остатки 1, …, n–1»)/СУММКВ(«Остатки 1, …,n»)

      Критическое значение коэффициента автокорреляции для числа наблюдений n=10 и уровня значимости a=0,05 составляет r(1)кр=0,632. Так как коэффициент автокорреляции остатков первого порядка не превышает по абсолютной величине критическое значение, то это еще раз указывает на отсутствие автокорреляции в остатках.

      5) Нормальный закон распределения остатков. Выполнение этой предпосылки проверяем с помощью R/S-критерия, определяемого по формуле

,

где emax=6,32; emin=(–5,19) — наибольший и наименьший остатки соответственно (определялись с помощью встроенных функций «МАКС» и «МИН»); — стандартное отклонение ряда остатков (определено с помощью встроенной функции «СТАНДОТКЛОН») (см. прил. 1).

      Критические границы R/S-критерия для числа наблюдений n=10 и уровня значимости a=0,05 имеют значения: (R/S)1=2,67 и (R/S)2=3,69.

      Так как расчетное значение R/S-критерия попадает в интервал между критическими границами, то статистическая гипотеза о нормальном законе распределения остатков не отклоняется на уровне значимости a=0,05.

Информация о работе Эконометрика