Автор работы: Пользователь скрыл имя, 28 Апреля 2016 в 21:44, курсовая работа
Формализм современной экономической теории вызван ориентацией науки на естественнонаучные идеалы: чёткие предпосылки, формальный анализ, точные числа. Модель познания подобного типа называется гипотетико-дедуктивной. Сперва задаются некие законы, затем согласно им анализируются фактические данные, после чего дедуктивно делаются выводы.
Неоклассический подход регулярно критикуется за представление социально-экономической системы и её элементов в формальных рамках. Нельсон и Уинтер, авторы эволюционного подхода к экономике, показали: подвижное неравновесное состояние нормально для экономической системы, а субъекты экономики действуют отнюдь не рационально хотя бы потому, что невозможно владеть всей информацией.
Данный метод уже довольно давно применяется в рамках эволюционной теории, с его помощью были получены многие содержательные выводы. Использование симуляций было предложено еще в классической книге Нельсона и Уинтера как один из способов реализации эволюционных моделей. Они выбрали этот метод потому, что эволюционные процессы — результат функционирования сложной социально-экономической системы. В силу этого различные экономические системы, по меньшей мере, трудно представимы в формальном виде, особенно если учесть эволюционный характер происходящих в системе изменений. Но есть и более фундаментальные причины выбора этого метода.
Метод компьютерных симуляций позволяет моделировать системы любой сложности и отслеживать их эволюцию во времени. Его распространение неразрывно связано с бурным прогрессом компьютерной техники. Компьютер дает возможность вычислять динамическую траекторию системы, причем со временем эффективность вычислений растет, а затраты на их проведение падают. Именно поэтому метод симуляций довольно быстро распространился среди исследователей в качестве нового перспективного инструмента анализа [1].
По нашему мнению, метод компьютерных симуляций открывает возможности для экспериментирования в общественных науках, включая экономику. Экономисты обретают доступ к большому массиву данных, получаемых в результате проведения симуляционных «прогонок».
Раньше единственным источником данных о динамике реальной экономической системы служили эмпирические наблюдения, с которыми помимо их теоретической нагруженности были сопряжены погрешность измерений и различные неточности. Не было возможности «повернуть время вспять» и увидеть, какой была бы динамика системы при изменении тех или иных условий. Единственность источника данных о социально-экономическом мире позволяет нам в лучшем случае выявить корреляционную зависимость между наблюдаемыми историческими данными, однако мы не можем дать точный ответ на ключевой вопрос экономической науки: «Почему?».
Метод симуляций открывает экономистам новый источник данных, правда иного рода. Это данные, генерируемые компьютерной программой, которая симулирует взаимодействие и развитие моделируемой системы, то есть экономики в целом или определенной ее части, такой, как отрасль или рынок. Программа позволяет проследить эволюцию системы от начального момента до любого требуемого периода в будущем. Для этого в программу закладываются правила перехода системы в следующее состояние, причем состояние системы в любой момент времени характеризуется состоянием всех ее элементов, в том числе и на высоком системном уровне.
Не имея прямой связи с действительностью, эти данные тем не менее крайне ценны для исследователя, поскольку позволяют реализовать определенные требования, предъявляемые к экономической модели. Ключевое их значение состоит в возможности выявлять на их основе структуры и механизмы, управляющие течением наблюдаемых событий в экономических системах, что является главной задачей науки с точки зрения философии критического реализма.
Если признать, что наблюдаемые эмпирические данные — результат одной реализации внутренних структур и механизмов, то получение выводов о самих этих механизмах с использованием исключительно эмпирических данных не представляется возможным. Впрочем, следует согласиться с точкой зрения Н. А. Макашевой и признать, что «компьютерные симуляции сами по себе не позволяют исследовать структуры, они лишь воспроизводят взаимодействие агентов и дают результат, который может служить „подсказкой" для исследователя структур». Однако само существование такой «подсказки» до недавнего времени было невозможно, и это — несомненная заслуга метода симуляций [7].
Кроме того, как отмечают Т. Бреннер и Й. Мурман, симуляции могут предоставить исследователю данные об объектах, наблюдение которых в действительности затруднительно, либо решить проблему недостатка данных [6].
Отметим, что данные такого рода получены не дедуктивным, но и не индуктивным путем. Сам смысл симуляций предопределяет то, что оба метода построения умозаключений, индукция и дедукция, должны быть объединены на методологическом уровне. Р. Аксельрод так описывает симуляционный метод: «Подобно дедукции, мы начинаем с набора явно заданных предпосылок, но в отличие от дедукции не доказываем теорем. Вместо этого симуляция создает данные, которые можно анализировать индуктивно. Однако в отличие от данных, полученных с помощью обычной индукции, данные, полученные симуляционным путем, сгенерированы по строго специфицированным правилам... Если индукция может быть использована для выяснения закономерностей в данных, а дедукция — для выведения следствий из предпосылок, то симуляционное моделирование работает на интуицию».
Построение выводов из симуляций таким способом обосновано также тем, что «человек способен блестяще справиться с задачей выявления тех или иных тенденций, но в силу своих ограниченных возможностей не справляется с проведением логических мысленных экспериментов о возможных будущих состояниях системы». Симуляции в этом контексте способны служить обоснованием для мысленных экспериментов, позволяя понять, что было бы, если бы определенные характеристики системы изменились.
Помимо объяснительной силы метод симуляций претендует и на определенную предсказательную силу. Хотя, следуя Лоусону, можно считать, что «предсказание событий обычно является недостижимым» и «в любом случае не требуется для успеха экономики как науки», изучающей системы такого уровня сложности, существует и противоположная позиция [4]. Так, по словам Д. С. Чернавского, современная наука может предсказать, какие именно состояния сложной системы возможны в будущем: наука может оценить вероятность различных вариантов, но не может дать однозначный ответ о том, какое конкретное состояние будет реализовано.
Метод симуляций может прогнозировать будущие состояния системы именно в таком вероятностном контексте. Пользуясь симуляционной моделью, нельзя с уверенностью сказать, какое конкретное состояние системы будет достигнуто, но анализ модели позволяет выделить возможные классы состояний системы и оценить вероятности пребывания в каждом состоянии, что характеризует прогнозные свойства моделирования в новом свете. Но даже в этом можно увидеть существенный прогресс методологии, который позволит «отделить само понятие прогноза от „приставшего" к нему определения „количественный"».
Проблемы экономической науки носят во многом философский характер и связаны с внутренней противоречивостью и несостоятельностью позитивизма. В рамках эволюционной экономики можно преодолеть внутренние дефекты неоклассики как на методологическом, так и на теоретическом уровне.
В настоящее время доминирующую методологическую позицию в эволюционной экономике можно охарактеризовать как квазипозитивизм. Исследователи разрабатывают сложные модели действительности с целью их последующей калибровки на основании эмпирических данных. При подобном развитии эволюционной экономики существует большой риск утратить понимание сущности исследуемого явления в погоне за точностью модели, которая трактуется в свете позитивизма как соответствие данных, получаемых в результате моделирования, и наблюдаемых эмпирических данных. К сожалению, такой позитивистский критерий задает современное развитие эволюционной экономики.
Как было показано, подобное развитие способно завести эволюционную экономику в тупик. Природа сложных систем такова, что построение корректного количественного прогноза невозможно. Поэтому экономические модели должны в первую очередь быть ориентированы на выявление внутренних взаимосвязей системы, которые называются также порождающими механизмами, и только во вторую — предлагать качественный и вероятностный прогнозы.
Информация о работе Неоклассика: недостатки подхода, побудившие создать эволюционную теорию