Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 21:05, реферат
Неопределенность – это фундаментальное свойство природы, а еще более (и точнее) - свойство, характеризующее неточность, незамкнутость, неокончательность, неполноту наших представлений о внешнем мире, и принципиальную непредсказуемость будущих его состояний для сознания, мыслящего этот мир в динамических категориях
Выполним теперь следующие операции.
· Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) — мы получим дисперсию (меру разброса) случайной величины X1 , т.е. D1. Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.
· Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2 и также разделим на (n -1). То, что мы теперь получим, называется ковариацией C12 случайных величин X1 , X2 и служит мерой их статистической связи.
· Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную матрицу C[k·k], которую принято называть ковариационной.
Эта матрица имеет на главной диагонали дисперсии случайных величин Xi, а в качестве остальных элементов — ковариации этих величин ( i =1…k).
Ковариационная матрица C[k·k]
D1 | C12 | C13 | … | … | C1k |
C21 | D2 | C23 | … | … | C2k |
… | … | … | … | … | … |
Cj1 | Cj2 | … | Cji | … | Cjk |
… | … | … | … | … | … |
Cn1 | Cn2 | … | Cni | … | Dk |
Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или корреляционную матрицу
R [k·k]
1 | R12 | R13 | … | … | R1k |
R21 | 1 | R23 | … | … | R2k |
… | … | … | … | … | … |
Rj1 | Rj2 | … | Rji | … | Rjk |
… | … | … | … | … | … |
Rn1 | Rn2 | … | Rni | … | 1 |
в которой на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.
Так вот, пусть мы полагали наблюдаемые переменные Ei независящими друг от друга, т.е. ожидали увидеть матрицу R[k·k] диагональной, с единицами в главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.
Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора, как оценить степень его влияния на основные (наблюдаемые) переменные? А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?
Ответы на
такие практические вопросы призван
давать факторный анализ. В его
основе лежит все тот же “вездесущий”
метод статистического
Дальнейший ход анализа при выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с методом главных компонент, если же мы пользуемся только матрицей R[k·k], то мы используем метод факторного анализа в его “чистом” виде.
Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных (факторов), и если они обнаружены, то получить количественное описание их влияния на основные переменные Ei.
Ход рассуждений при выполнении поиска главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных Zj ( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):
Zj = S Aj i ·X
и, кроме того, обладает дисперсией, такой что
D(Z1) ³ D(Z2) ³ … ³ D(Zk).
Поиск коэффициентов Aj i (их называют весом j-й компонеты в содержании i-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.
Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]— как описание k точек k-мерного пространства.
Так вот, замена реальных, хотя и нормированных переменных Xi на точно такое же количество переменных Z j означает не что иное, как поворот k осей многомерного пространства.
“Перебирая” поочередно оси, мы находим вначале ту из них, где дисперсия вдоль оси наибольшая. Затем делаем пересчет дисперсий для оставшихся k-1 осей и снова находим “ось-чемпион” по дисперсии и т.д.
Образно говоря, мы заглядываем в куб (3-х мерное пространство) по очереди по трем осям и вначале ищем то направление, где видим наибольший “туман” (наибольшая дисперсия говорит о наибольшем влиянии чего-то постороннего); затем “усредняем” картинку по оставшимся двум осям и сравниваем разброс данных по каждой из них — находим “середнячка” и “аутсайдера”. Теперь остается решить систему уравнений — в нашем примере для 9 переменных, чтобы отыскать матрицу коэффициентов (весов) A[k·k].
Если коэффициенты Aj i найдены, то можно вернуться к основным переменным, поскольку доказано, что они однозначно выражаются в виде (суммирование по j=1…k)
X i = S Aji·Z j .
Отыскание матрицы весов A[k·k] требует использования ковариационной матрицы и корреляционной матрицы.
Таким образом,
метод главных компонент
· Мы решаем
задачу о наличии ровно стольких
факторов, сколько у нас наблюдаемых
переменных, т.е. вопрос о нашем согласии
на меньшее число латентных
· В результате
решения, теоретически всегда единственного,
а практически связанного с громадными
вычислительными трудностями
Этот ответ обоснован — дисперсия этого фактора оказалась третьей по крупности среди всех прочих. Всё… Больше ничего получить в этом случае нельзя. Другое дело, что этот вывод оказался нам полезным или мы его игнорируем — это наше право решать, как использовать системный подход!
Несколько иначе осуществляется исследование латентных переменных в случае применения собственно факторного анализа. Здесь каждая реальная переменная рассматривается также как линейная комбинация ряда факторов Fj , но в несколько необычной форме
X i = S B ji · Fj + D i.
причем суммирование ведется по j=1…m , т.е. по каждому фактору.
Здесь коэффициент Bji принято называть нагрузкой на j-й фактор со стороны i-й переменной, а последнее слагаемое в {3-33} рассматривать как помеху, случайное отклонение для Xi. Число факторов m вполне может быть меньше числа реальных переменных n и ситуации, когда мы хотим оценить влияние всего одного фактора (ту же вежливость продавцов), здесь вполне допустимы.
Обратим внимание
на само понятие “латентный”, скрытый,
непосредственно не измеримый фактор.
Конечно же, нет прибора и нет
эталона вежливости, образованности,
выносливости и т.п. Но это не мешает
нам самим “измерить” их — применив
соответствующую шкалу для
Можно отойти от экономики и обратиться к спорту. Кто будет спорить, что результат спортсмена при прыжках в высоту зависит от фактора — “сила толчковой ноги”. Да, это фактор можно измерить и в обычных физических единицах (ньютонах или бытовых килограммах), но когда?! Не во время же прыжка на соревнованиях!
А ведь именно в это, рабочее время фиксируются статистические данные, накапливается материал для исходной матрицы.
Несколько более сложно объяснить сущность самих процедур факторного анализа простыми, элементарными понятиями (по мнению некоторых специалистов в области факторного анализа — вообще невозможно). Поэтому постараемся разобраться в этом, используя достаточно сложный, но, к счастью, доведенный в практическом смысле до полного совершенства, аппарат векторной или матричной алгебры.
До того как станет понятной необходимость в таком аппарате, рассмотрим так называемую основную теорему факторного анализа. Суть ее основана на представлении модели факторного анализа в матричном виде
X [k·1] = B [k·m] · F [m·1] + D [k·1]
и на последующем доказательстве истинности выражения
R [k·k] = B [k·m] · B*[m·k],
для “идеального” случая, когда невязки D пренебрежимо малы.
Здесь B*[m·k] это та же матрица B [k·m], но преобразованная особым образом (транспонированная).
Трудность задачи отыскания матрицы нагрузок на факторы очевидна — еще в школьной алгебре указывается на бесчисленное множество решений системы уравнений, если число уравнений больше числа неизвестных. Грубый подсчет говорит нам, что нам понадобится найти k·m неизвестных элементов матрицы нагрузок, в то время как только около k2 / 2 известных коэффициентов корреляции. Некоторую “помощь” оказывает доказанное в теории факторного анализа соотношение между данным коэффициентом парной корреляции (например R12) и набором соответствующих нагрузок факторов:
R12 = B11 · B21 + B12 · B22 + … + B1m · B2m .
Таким образом, нет ничего удивительного в том утверждении, что факторный анализ (а, значит, и системный анализ в современных условиях) — больше искусство, чем наука. Здесь менее важно владеть “навыками” и крайне важно понимать как мощность, так и ограниченные возможности этого метода.
Есть и еще одно обстоятельство, затрудняющее профессиональную подготовку в области факторного анализа — необходимость быть профессионалом в “технологическом” плане, в нашем случае это, конечно же, экономика.
Но, с другой стороны, стать экономистом высокого уровня вряд ли возможно, не имея хотя бы представлений о возможностях анализировать и эффективно управлять экономическими системами на базе решений, найденных с помощью факторного анализа.
Информация о работе Модели и методы решения проблемы выбора в условиях неопределенности