Автор работы: Пользователь скрыл имя, 12 Сентября 2011 в 07:42, доклад
КЛАССИФИКАЦИЯ МАГНИТНЫХ МАТЕРИАЛОВ
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
МАГНИТОМЯГКИЕ МАТЕРИАЛЫ ДЛЯ ПОСТОЯННЫХ И НИЗКОЧАСТОТНЫХ МАГНИТНЫХ ПОЛЕЙ
Инерционность смещения доменных границ, проявляющихся на высоких частотах, приводит не только к росту магнитных потерь, но и к снижению магнитной проницаемости ферритов. Частоту f гр , при которой начальная магнитная проницаемость уменьшается до 0,7 от ее значения в постоянном магнитном поле, называют граничной . Как правило, f кр < f гр . Для сравнительной оценки качества магнитомягких ферритов при заданных значениях H и f удобной характеристикой является относительный тангенс угла потерь, под которым понимают отношение tg d / m н .
Сравнение
магнитных свойств ферритов с
одинаковой начальной
В ферритах,
как и в ферромагнетиках,
Магнитные
свойства ферритов зависят от
механических напряжений, которые
могут возникать при нанесении
обмотки, креплении изделий и
по другим причинам. Чтобы не
было ухудшения магнитных
Электрические свойства . По электрическим свойствам ферриты относятся к классу полупроводников или даже диэлектриков. Их электропроводность обусловлена процессами электронного обмена между ионами переменной валентности("прыжковый" механизм). Электроны, учавствующие в обмене, можно рассматривать как носители заряда, концентрация которых практически не зависит от температуры. Вместе с тем, при повышении температуры экспоненциально увеличивается вероятность перескока электронов между ионами переменной валентности, т.е. возрастает подвижность носителей заряда. Поэтому температурное изменение удельной проводимости и удельного сопротивления ферритов с достаточной для практических целей точностью можно описать следующими формулами:
g = g 0 exp [-Э 0 /(kT)] ; r = r 0 exp [Э 0 /(kT)]
где g 0 и r 0 - постоянные величины для данного материала; Э 0 - энергия активации электропроводности.
Среди многих факторов, влияющих на электрическое сопротивление ферритов, основным является концентрация в них ионов двухвалентного железа Fe 2+ . Под влиянием теплового движения слабосвязанные электроны перескакивают от ионов железа Fe 2+ к ионам Fe 3+ и понижают валентность последних. С увеличением концентрации двухвалентных ионов железа линейно возрастает проводимость материала и одновременно уменьшается энергия активации Э 0 . Отсюда следует, что при сближении ионов переменной валентности понижается высота энергетических барьеров , которые должны преодолевать электроны при переходе от одного иона к соседнему. У ферритов-шпинелей энергия активации электропроводности обычно лежит в пределах от 0,1 до 0,5 эВ. Наибольшей концентрацией ионов двухвалентного железа и, соответственно, наименьшим удельным сопротивлением обладает магнетит Fe 3 O 4 (феррит железа), у которого r =5 · 10 -5 Ом · м. В то же время в феррогранатах концентрация ионов Fe 2+ ничтожно мала, потому их удельное сопротивление может достигать высоких значений (до 10 9 Ом · м).
Экспериментально
установлено, что присутствие
в ферритах-шпинелях
Для ферритов
характерна относительно
Большое влияние
на поляризационные свойства
ферритов оказывают ионы
2.4. Магнитные материалы специализированного назначения
Ферриты и металлические сплавы с ППГ. Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.
Двоичные
элементы на магнитных
К материалам
и изделиям этого типа
К пу = В r /В max
Для определенности В max измеряют при H max = 5H c . Желательно, чтобы К пу был возможно ближе к единице. Для обеспечения быстрого перемагничивания сердечников они должны иметь небольшой коэффициент переключения S q , численно равный количеству электричества на единицу толщины сердечника, которое необходимо для перемагничивания его из одного состояния остаточной индукции в противоположное состояние максимальной индукции.
Кроме того,
материалы с ППГ должны
Ферриты с
ППГ в практике распространены
шире, чем металлические тонкие
ленты. Это объясняется тем,
что технология изготовления
сердечников наиболее проста
и экономична. Свойства ферритовых
сердечников приведены в табл.
Материал или сердечник | H c
,
A/м |
B r
,
Тл |
К пу
,
(не менее) |
S q
,
мкКл/м |
Т к , ° С | Примечание |
Ферриты различных марок | 10-1200 | 0,15-0,25 | 0,9 | 25-55 | 110-630 | Имеется свыше 25 различных марок |
Микронные сердечники из пермаллоев (толщины ленты от 2 до 10 мкм) | 8-50 | 0,6-1,5 | 0,85-0,9 | 25-100 | 300-630 | Сплавы 50НП, 65Н, 79НМ, 34НКПМ |
Табл.3 Свойства сердечников и материалов с ППГ.
Ферритам
свойственна спонтанная
Из ферритов с ППГ наиболее широкое применение находят магний-марганцевые и литиевые феррошпинели. Установлено, что прямокгольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микронеоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междуузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Mn 3+ , образующихся при определенных условиях синтеза.
При использовании
ферритов следует учитывать
В зависимости
от особенности устройств, в
которых применяются ферриты
с ППГ, требования, предъявляемые
к ним, могут существенно
В запоминающих
устройствах ЭВМ применяют
Ферриты для устройств СВЧ. Диапазон СВЧ соответствует длинам волн от 1м до 1мм. В аппаратуре и приборах, где используются электромагнитные волны диапазона СВЧ, необходимо управлять этими колебаниями: переключать поток энергии с одного направления на другое, изменять фазу колебаний, поворачивать полоскость поляризации волны, частично или полностью поглощать мощность потока.
Электромагнитные
волны могут распространяться
в пространстве, заполненном диэлектриком,
а от металлов они почти
полностью отражаются. Поэтому металлические
поверхности используют для
Практическое
применение ферритов СВЧ