Автор работы: Пользователь скрыл имя, 12 Сентября 2011 в 07:42, доклад
КЛАССИФИКАЦИЯ МАГНИТНЫХ МАТЕРИАЛОВ
Магнитные материалы подразделяют на магнитомягкие, магнитотвердые и материалы специализированного назначения.
МАГНИТОМЯГКИЕ МАТЕРИАЛЫ ДЛЯ ПОСТОЯННЫХ И НИЗКОЧАСТОТНЫХ МАГНИТНЫХ ПОЛЕЙ
Табл.1 Некоторые свойства магнитомягких ферромагнитных материалов.
Технически чистое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих его магнитные свойства. Вследствие сравнительно низкого удельного сопротивления технически чистое железо используют довольно редко, в основном для изготовления магнитопроводов постоянного магнитного потока.
Обычное техническичистое железо изготавливают рафинированием чугуна в мартеновских печах или в конверторах; оно имеет суммарное содержание примесей 0,08-0,1%
Кремнистая электротехническая сталь (по ГОСТу электротехническая тонколистовая) является основным магнитомягким материалом массового потребления. Введением в состав этой стали кремния достигается повышение удельного сопротивления, что вызывает снижение потерь на вихревые токи. Кроме того, наличие в стали кремния способствует выделению углерода в виде графита, а также почти полному раскислению стали за счет химического связывания кислорода в SiO 2 . Последний в виде шлака выделяется из расплава. В результате легирование кремнием приводит к увеличению магнитной проницаемости, уменьшению коэрцитивной силы и снижению потерь на гистерезис. Положительное влияние кремния на магнитную проницаемость стали обусловлено также уменьшением констант магнитной анизотропии и магнитострикции. У стали с содержанием кремния 6,8% константа магнитной анизотропии в три раза меньше, чем у чистого железа, а значение магнитострикции практически равно нулю. При таком содержании кремния сталь обладает наибольшей магнитной проницаемостью. Однако промышленные марки электротехнической стали содержат не более 5% кремния. Это объясняется тем, что кремний ухудшает механические свойсва стали, придает ей хрупкость и ломкость. Такая сталь непрригодна для штамповки. Кроме того, при введении кремния несколько уменьшается индукция насыщения (примерно 0,05 Тл на 1% Si), так как кремний является немагнитным компонентом. Вместе с тем легирование кремнием повышает стабильность магнитных свойств стали во времени.
Свойства
стали значительно улучшаются
за счет образования магнитной
текстуры при холодной
При холодной
прокатке происходит сильное
обжатие материала;
Текстурованная сталь анизотропна по свойствам: вдоль напрвления прокатки наблюдается существенно более высокая магнитная проницаемость и меньшие потери на гистерезис. Сталь выпускается в виде рулонов, листов и резаной ленты. Она может быть без электроизоляционного покрытия или иметь его. Сталь различных классов предназначается для изготовления магнитных цепей аппаратов, трансформаторов, электричекских машин. Применение ленточных сердечников из текстурованной стали в силовых трансформаторах позволяет уменьшить их массу и габаритные размеры на 20-25%, а в радиотрансформаторах - на 40%.
Листы тонкого
проката предназначены в
Низкокоэрцитивные сплавы. Пермаллои - железоникелевые сплавы, обладающие весьма большой магнитной проницаемостью в области слабых полей и очень маленькой коэрцитивной силой. Пермаллои подразделяют на высоко- и низконикелевые. Высоконикелевые пермаллои содержат 72-80% никеля, а низконикелевые - 40-50% никеля. Магнитные свойства пермаллоев очень чувствительны к внешним механическим напряжениям, зависят от химического состава и наличия инородных примесей в сплаве, а также очень резко изменяются в зависимости от режимов термообработки материала (температуры, скорости нагрева и охлаждения, окружающей среды и т.д.). Термическая обработка высоконикелевых пермаллоев сложнее, чем низконикелевых.
Удельное сопротивление высоконикелевых пермаллоев почти в три раза меньше, чем у низконикелевых, поэтому при повышенных частотах предпочтительнее использовать низконикелевые пермаллои. Кроме того, магнитная проницаемость пермаллоев сильно снижается с увеличением частоты. Это объясняется возникновением в материале заметных вихревых токов из-за небольшого удельного сопротивления.
Диапазон изменения магнитных свойств и удельного сопротивления промышленных марок пермаллоев указан в табл.1. Вследствие различия свойств низконикелевые и высоконикелевые пермаллои имеют несколько различные применения.
Низконикелевые
сплавы 45Н и 50Н применяют для
изготовления сердечников
Сильная зависимость
магнитных свойств пермаллоя
от механических напряжений
2.2. Магнитомягкие высокочастотные материалы
Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения их в свою очередь можно подразделить на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ.
По физической
природе и строению
2.3. Ферриты.
Как отмечалось
выше, ферриты представляют собой
оксидные магнитные материалы,
у которых спонтанная
Большое удельное
сопротивление, превышающее
Номер | Название | Марка ферритов | |
группы | группы | Ni-Zn | Mn-Zn |
I | Общего применения | 100НН, 400НН, 400НН1, 600НН, 1000НН, 2000НН | 1000НМ, 1500НМ, 2000НМ, 3000НМ |
II | Термостабильные | 7ВН, 20ВН, 30ВН, 50ВН, 100ВН, 150ВН | 700НМ, 1000НМ3, 1500НМ1, 1500НМ3, 2000НМ1, 2000НМ3 |
III | Высокопроницаемые | 4000НМ, 6000НМ, 6000НМ1, 10000НМ, 20000НМ | |
IV | Для телевизионной техники | 2500НМС1, 3000НМС | |
V | Для импульсных трансформаторов | 300ННИ, 300ННИ1, 350ННИ, 450ННИ, 1000ННИ, 1100ННИ | 1100НМИ |
VI | Для перестраиваемых контуров | 10ВНП, 35ВНП, 55ВНП, 60ВНП, 65ВНП, 90ВНП, 150ВНП, 200ВНП, 300ВНП | |
VII | Для широкополосных трансформаторов | 50ВНС, 90ВНС, 200ВНС, 300ВНС | |
VIII | Для магнитных головок | 500НТ, 500НТ1, 1000НТ, 1000НТ1, 2000НТ | 500МТ, 1000МТ, 2000МТ, 5000МТ |
IX | Для датчиков температуры | 1200НН, 1200НН1, 1200НН2, 1200НН3, 800НН | |
X | Для магнитного экранирования | 200ВНРП, 800ВНРП |
Табл. 2 Группы и марки магнитомягких ферритов.
Высокопроницаемые ферриты. В качестве магнитомягких материалов наиболее широко применяют никель-цинковые и марганец-цинковые ферриты. Они кристаллизуются в структуре шпинели и представляют собой твердые растворы замещения, образованные двумя простыми ферритами, один из которых (NiFe 2 O 4 или MnFe2O4) является ферримагнетиком, а другой (ZnFe 2 O 4 ) - немагнитен. Основные закономерности изменения магнитных свойств от состава в подобных системах представлены на рис.2 и 3. Чтобы объяснить наблюдаемые закономерности, необходимо принять во внимание, что катионы цинка в структуре шпинели всегда занимают тетраэдрические кислородные междуузлия, а катионы трехвалентного железа могут находиться как в тетра-, так и в октаэдрических промежутках. Состав твердого раствора с учетом распределения
Рис. 3 Зависимость индукции насыщения (при Е=20 ° С) и температуры Кюри твердых растворов Ni 1-x Zn x Fe 2 O 4 от состава (температура обжига 1320 ° С) | Рис.4 Зависимость
начальной магнитной |
катионов по кислородным междуузлиям можно охарактеризовать следующей формулой:
(Zn 2+ x Fe 3+ 1-x )[Ni 2+ 1-x Fe 3+ 1+x ]O 4
где стрелки
условно указывают направление
магнитных моментов ионов в соответствующих
подрешетках. Отсюда видно, что вхождение
цинка в кристаллическую
Ослабление
обменного взаимодействия
Значения
начальной магнитной
Магнитные свойства. Для ферритов, используемых в переменных полях, кроме начальной магнитной проницаемости одной из важнейших характеристик является тангенс угла потерь tg d . Благодаря низкой проводимости составляющая потерь на вихревые токи в ферритах практически мала и ею можно пренебречь. В слабых магнитных полях незначительными оказываются и потери на гистерезис. Поэтому значение tg d в ферритах на высоких частотах в основном определяется магнитными потерями, обусловленными релаксациооными и резонансными явлениями. Для оценки допустимого частотного диапазона, в котором может использоваться данный материал, вводят понятие критической частоты f кр . Обычно под fкр понимают такую частоту, при которой tg d достигает значения 0,1.