Автор работы: Пользователь скрыл имя, 29 Сентября 2011 в 16:28, дипломная работа
Целью данной работы является создание вычислительных моделей по свойствам продуктов нанотехнологий. В частности, объектом исследований мы выбрали линейно-цепочечный углерод.
В задачи работы входили:
- Аналитический обзор возможностей методов интеллектуального анализа данных.
-Сбор данных по электрическим свойствам нанопленок ЛЦУ, подготовка баз данных.
- Создание моделей свойств нанопленок с помощью искусственных нейронных сетей, позволяющих прогнозировать их свойства в зависимости от различных параметров.
Введение……………………………………………………………………….…3
Глава 1 Литературный обзор
1.1. Что такое Data Mining ……………………….………………...……….....4
1.2. Методы и стадии Data Mining……………………………………………...5
1.3. Классификация задач Data Mining………………………………………...8
1.4. Модели Data Mining………………………………………………………..11
1.5. Теория нейронных сетей………………………………………………….14
1.6.Классификация нейронных сетей…………………………………………18
1. 7.Подготовка данных для обучения ……………..…………………………20
1.8. Выбор структуры нейронной сети……………………………………….21
1.9. кратко о ЛЦУ…………………………………………………………….22
Глава 2. Методика исследования и результаты работы
2.1. Вычислительная модель электрических пленок ЛЦУ……………….…25
2.2. Предобработка данных………………………………………………..…26
2.4. Структура и обучение нейронной сети…………...……………………...36
2.5. Анализ качества обучения нейронной сети………………………………42
2.6. Проверка и оценка моделей……………...……………………………….45
Заключение…………………………………………………………………..…49
Список использованных источников …………………………………….......50
Приложение № 1………………………………………………………………52
Если модель достаточно сложна, а значит, требуется много времени на ее обучение и последующую оценку, то иногда бывает можно построить и протестировать модель на небольшой части выборки. Однако этот вариант подходит только для однородных данных. Построенные модели рекомендуется тестировать на различных выборках для определения их обобщающих способностей. В ходе экспериментов можно варьировать объем выборки (количество записей), набор входных и выходных переменных, использовать выборки различной сложности.
Одним из наиболее
Перекрестная проверка-метод
номер
блока |
номер элемента | группа элемента | толщина пленки ЛЦУ | напряжение В | реал.сила тока А | пров.
сила тока |
1 | 48 | 2 | 2000 | -2,76E+00 | -5,99E-03 | -5,85E-02 |
1 | 48 | 2 | 2000 | -2,03E+00 | -3,64E-03 | -3,71Е-02 |
2 | 14 | 4 | 1000 | 2,52E+01 | 2,09E-03 | 2,14Е-03 |
2 | 14 | 4 | 1000 | 1,30E+01 | 1,72E-04 | 1,62Е-04 |
3 | 52 | 6 | 2000 | -7,73E+00 | -9,19E-03 | -9,02Е-03 |
3 | 52 | 6 | 2000 | -6,52E+00 | -5,34E-03 | -5,43Е-03 |
4 | 22 | 4 | 1000 | -2,47E+00 | -6,39E-02 | -6,45Е-02 |
4 | 22 | 4 | 1000 | -2,07E+00 | -5,36E-02 | -5,24Е-02 |
5 | 48 | 2 | 1000 | 1,61E+00 | 4,52E-01 | 4,65Е-01 |
5 | 48 | 2 | 1000 | 1,79E+00 | 5,00E-01 | 4,96Е-01 |
Рис.19 Данные перекрестной проверки нейросети
Из таблицы видно, что моделируемые
выходные значение не на много отличаются
от реальных, по этому можно считать что
модель соответствует реальности и поставленным
задачам.
Полученные данные и их обсуждение
Проведен сбор данных по электрическим свойствам пленок ЛЦУ легированных и интеркалированных различными материалами.
Подготовлена база данных в области линейно – цепочного углерода. В нее вошли результаты исследований В.Д. Кочакова.
База данных представляет собой таблицу Microsoft Excel включающую в себя 7 столбцов и 150 строк. Они являются отражением свойств пленок линейно – цепочного углерода систематизированных и преобразованных в цифровую, удобную для анализа форму.
Созданы вычислительные модели,
позволяющей предсказывать
Методы интеллектуального анализа данных
позволяет существенно увеличить значение
уже полученных экспериментальных результатов,
а также получить новые “экспериментальные”
результаты и выявить новые неизвестные
ранее, но содержащиеся в экспериментальных
данных, закономерности между свойствами
пленок ЛЦУ.
Заключение.
Методы
интеллектуального анализа
Преимущества использование
В ходе работы были получены следующие результаты:
Создана база знаний по электрофизическим свойствам пленок ЛЦУ.
Созданы вычислительные модели, позволяющей предсказывать свойства ЛЦУ ранее не исследованных условий без проведения дополнительных экспериментов.
Методы
интеллектуального анализа
Список использованных источников
1. Анил К. Джей Введение в искусственные нейронные сети. // Открытые системы №04/97. -168 с.
Приложение
№ 1
номер элемента | группа элемента | толщина пленки ЛЦУ | напряжение В | сила тока А |
48 | 2 | 2000 | -3,00E+00 | -6,85E-03 |
48 | 2 | 2000 | -2,76E+00 | -5,99E-03 |
48 | 2 | 2000 | -2,51E+00 | -5,15E-03 |
48 | 2 | 2000 | -2,27E+00 | -4,37E-03 |
48 | 2 | 2000 | -2,03E+00 | -3,64E-03 |
48 | 2 | 2000 | -1,79E+00 | -2,98E-03 |
48 | 2 | 2000 | -1,55E+00 | -2,38E-03 |
48 | 2 | 2000 | -1,30E+00 | -1,84E-03 |
48 | 2 | 2000 | -1,06E+00 | -1,36E-03 |
48 | 2 | 2000 | -8,18E-01 | -9,43E-04 |
48 | 2 | 2000 | -5,76E-01 | -5,88E-04 |
48 | 2 | 2000 | -3,33E-01 | -2,96E-04 |
48 | 2 | 2000 | -9,06E-02 | -7,04E-05 |
48 | 2 | 2000 | 1,51E-01 | 1,19E-04 |
48 | 2 | 2000 | 3,94E-01 | 3,60E-04 |
48 | 2 | 2000 | 6,37E-01 | 6,64E-04 |
48 | 2 | 2000 | 8,79E-01 | 1,03E-03 |
48 | 2 | 2000 | 1,12E+00 | 1,45E-03 |
48 | 2 | 2000 | 1,36E+00 | 1,94E-03 |
48 | 2 | 2000 | 1,61E+00 | 2,48E-03 |
48 | 2 | 2000 | 1,85E+00 | 3,08E-03 |
48 | 2 | 2000 | 2,09E+00 | 3,75E-03 |
48 | 2 | 2000 | 2,33E+00 | 4,51E-03 |
48 | 2 | 2000 | 2,58E+00 | 5,31E-03 |
48 | 2 | 2000 | 2,82E+00 | 6,18E-03 |
47 | 1 | 1000 | -3,00E+00 | -7,60E-01 |
47 | 1 | 1000 | -2,76E+00 | -6,90E-01 |
47 | 1 | 1000 | -2,51E+00 | -6,29E-01 |
47 | 1 | 1000 | -2,27E+00 | -5,69E-01 |
47 | 1 | 1000 | -2,03E+00 | -5,08E-01 |
47 | 1 | 1000 | -1,79E+00 | -4,49E-01 |
47 | 1 | 1000 | -1,55E+00 | -3,89E-01 |
47 | 1 | 1000 | -1,30E+00 | -3,28E-01 |
47 | 1 | 1000 | -1,06E+00 | -2,67E-01 |
47 | 1 | 1000 | -8,17E-01 | -2,06E-01 |
47 | 1 | 1000 | -5,76E-01 | -1,46E-01 |
47 | 1 | 1000 | -3,33E-01 | -8,44E-02 |
47 | 1 | 1000 | -9,01E-02 | -2,31E-02 |
47 | 1 | 1000 | 1,52E-01 | 3,82E-02 |
47 | 1 | 1000 | 3,95E-01 | 9,96E-02 |
47 | 1 | 1000 | 6,36E-01 | 1,61E-01 |
47 | 1 | 1000 | 8,79E-01 | 2,22E-01 |
47 | 1 | 1000 | 1,12E+00 | 2,83E-01 |
47 | 1 | 1000 | 1,36E+00 | 3,44E-01 |
47 | 1 | 1000 | 1,61E+00 | 4,05E-01 |
47 | 1 | 1000 | 1,85E+00 | 4,65E-01 |
47 | 1 | 1000 | 2,09E+00 | 5,28E-01 |
47 | 1 | 1000 | 2,33E+00 | 5,89E-01 |
47 | 1 | 1000 | 2,58E+00 | 6,50E-01 |
47 | 1 | 1000 | 2,82E+00 | 7,06E-01 |
52 | 6 | 2000 | -1,50E+01 | -2,56E-02 |
52 | 6 | 2000 | -1,38E+01 | -4,60E-02 |
52 | 6 | 2000 | -1,26E+01 | -3,84E-02 |
52 | 6 | 2000 | -1,14E+01 | -2,93E-02 |
52 | 6 | 2000 | -1,02E+01 | -2,13E-02 |
52 | 6 | 2000 | -8,94E+00 | -1,44E-02 |
52 | 6 | 2000 | -7,73E+00 | -9,19E-03 |
52 | 6 | 2000 | -6,52E+00 | -5,34E-03 |
52 | 6 | 2000 | -5,30E+00 | -2,85E-03 |
52 | 6 | 2000 | -4,09E+00 | -1,42E-03 |
52 | 6 | 2000 | -2,88E+00 | -6,08E-04 |
52 | 6 | 2000 | -1,67E+00 | -1,99E-04 |
52 | 6 | 2000 | -4,54E-01 | -2,82E-05 |
52 | 6 | 2000 | 7,58E-01 | 4,26E-05 |
52 | 6 | 2000 | 1,97E+00 | 1,30E-04 |
52 | 6 | 2000 | 3,18E+00 | 2,75E-04 |
52 | 6 | 2000 | 4,39E+00 | 4,88E-04 |
52 | 6 | 2000 | 5,61E+00 | 8,24E-04 |
52 | 6 | 2000 | 6,82E+00 | 1,32E-03 |
52 | 6 | 2000 | 8,03E+00 | 1,72E-03 |
52 | 6 | 2000 | 9,24E+00 | 2,16E-03 |
52 | 6 | 2000 | 1,05E+01 | 2,45E-03 |
52 | 6 | 2000 | 1,17E+01 | 2,72E-03 |
52 | 6 | 2000 | 1,29E+01 | 2,86E-03 |
52 | 6 | 2000 | 1,41E+01 | 3,12E-03 |
48 | 2 | 1000 | -1,75E+00 | -5,00E-01 |
48 | 2 | 1000 | -1,77E+00 | -5,00E-01 |
48 | 2 | 1000 | -1,78E+00 | -5,00E-01 |
48 | 2 | 1000 | -1,79E+00 | -5,00E-01 |
48 | 2 | 1000 | -1,79E+00 | -5,00E-01 |
48 | 2 | 1000 | -1,79E+00 | -4,99E-01 |
48 | 2 | 1000 | -1,55E+00 | -4,32E-01 |
48 | 2 | 1000 | -1,30E+00 | -3,65E-01 |
48 | 2 | 1000 | -1,06E+00 | -2,99E-01 |
48 | 2 | 1000 | -8,18E-01 | -2,31E-01 |
48 | 2 | 1000 | -5,75E-01 | -1,64E-01 |
48 | 2 | 1000 | -3,33E-01 | -9,50E-02 |
48 | 2 | 1000 | -9,07E-02 | -2,60E-02 |
48 | 2 | 1000 | 1,52E-01 | 4,31E-02 |
48 | 2 | 1000 | 3,95E-01 | 1,12E-01 |
48 | 2 | 1000 | 6,37E-01 | 1,81E-01 |
48 | 2 | 1000 | 8,79E-01 | 2,50E-01 |
48 | 2 | 1000 | 1,12E+00 | 3,18E-01 |
48 | 2 | 1000 | 1,36E+00 | 3,85E-01 |
48 | 2 | 1000 | 1,61E+00 | 4,52E-01 |
48 | 2 | 1000 | 1,79E+00 | 5,00E-01 |
48 | 2 | 1000 | 1,80E+00 | 5,00E-01 |
48 | 2 | 1000 | 1,80E+00 | 5,00E-01 |
48 | 2 | 1000 | 1,80E+00 | 5,00E-01 |
48 | 2 | 1000 | 1,80E+00 | 5,00E-01 |
14 | 4 | 2000 | -3,00E+01 | -1,40E-03 |
14 | 4 | 2000 | -2,76E+01 | -1,20E-03 |
14 | 4 | 2000 | -2,51E+01 | -1,02E-03 |
14 | 4 | 2000 | -2,27E+01 | -8,18E-04 |
14 | 4 | 2000 | -2,03E+01 | -6,46E-04 |
14 | 4 | 2000 | -1,79E+01 | -4,95E-04 |
14 | 4 | 2000 | -1,55E+01 | -3,80E-04 |
14 | 4 | 2000 | -1,36E+01 | -3,11E-04 |
14 | 4 | 2000 | -1,12E+01 | -2,40E-04 |
14 | 4 | 2000 | -8,79E+00 | -1,82E-04 |
14 | 4 | 2000 | -6,36E+00 | -1,28E-04 |
14 | 4 | 2000 | -3,94E+00 | -7,61E-05 |
14 | 4 | 2000 | -1,51E+00 | -2,45E-05 |
14 | 4 | 2000 | 9,10E-01 | 2,30E-06 |
14 | 4 | 2000 | 3,34E+00 | 1,89E-05 |
14 | 4 | 2000 | 5,76E+00 | 3,81E-05 |
14 | 4 | 2000 | 8,18E+00 | 6,57E-05 |
14 | 4 | 2000 | 1,06E+01 | 1,09E-04 |
14 | 4 | 2000 | 1,30E+01 | 1,72E-04 |
14 | 4 | 2000 | 1,55E+01 | 2,81E-04 |
14 | 4 | 2000 | 1,79E+01 | 4,74E-04 |
14 | 4 | 2000 | 2,03E+01 | 8,77E-04 |
14 | 4 | 2000 | 2,27E+01 | 1,38E-03 |
14 | 4 | 2000 | 2,52E+01 | 2,09E-03 |
14 | 4 | 2000 | 2,76E+01 | 2,93E-03 |
14 | 4 | 2000 | 3,00E+01 | 4,10E-03 |
7 | 5 | 1000 | -1,21E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,20E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,21E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,21E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,20E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,20E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,20E+00 | -1,00E-02 |
7 | 5 | 1000 | -1,12E+00 | -9,25E-03 |
7 | 5 | 1000 | -8,78E-01 | -6,92E-03 |
7 | 5 | 1000 | -6,36E-01 | -4,79E-03 |
7 | 5 | 1000 | -3,93E-01 | -2,85E-03 |
7 | 5 | 1000 | -2,97E-02 | -2,13E-04 |
7 | 5 | 1000 | 2,13E-01 | 1,48E-03 |
7 | 5 | 1000 | 4,55E-01 | 3,31E-03 |
7 | 5 | 1000 | 6,97E-01 | 5,48E-03 |
7 | 5 | 1000 | 9,40E-01 | 7,73E-03 |
7 | 5 | 1000 | 1,17E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,17E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
7 | 5 | 1000 | 1,16E+00 | 1,00E-02 |
22 | 4 | 2000 | -3,87E+00 | -1,00E-01 |
22 | 4 | 2000 | -3,90E+00 | -1,00E-01 |
22 | 4 | 2000 | -3,93E+00 | -1,00E-01 |
22 | 4 | 2000 | -3,69E+00 | -9,49E-02 |
22 | 4 | 2000 | -3,28E+00 | -8,48E-02 |
22 | 4 | 2000 | -2,88E+00 | -7,40E-02 |
22 | 4 | 2000 | -2,47E+00 | -6,39E-02 |
22 | 4 | 2000 | -2,07E+00 | -5,36E-02 |
22 | 4 | 2000 | -1,67E+00 | -4,31E-02 |
22 | 4 | 2000 | -1,26E+00 | -3,26E-02 |
22 | 4 | 2000 | -8,58E-01 | -2,22E-02 |
22 | 4 | 2000 | -4,54E-01 | -1,18E-02 |
22 | 4 | 2000 | -5,03E-02 | -1,31E-03 |
22 | 4 | 2000 | 3,54E-01 | 9,11E-03 |
22 | 4 | 2000 | 7,58E-01 | 1,95E-02 |
22 | 4 | 2000 | 1,16E+00 | 3,00E-02 |
22 | 4 | 2000 | 1,57E+00 | 4,03E-02 |
22 | 4 | 2000 | 1,97E+00 | 5,06E-02 |
22 | 4 | 2000 | 2,37E+00 | 6,08E-02 |
22 | 4 | 2000 | 2,78E+00 | 7,10E-02 |
22 | 4 | 2000 | 3,18E+00 | 8,09E-02 |
22 | 4 | 2000 | 3,59E+00 | 9,07E-02 |
22 | 4 | 2000 | 3,91E+00 | 1,00E-01 |
22 | 4 | 2000 | 3,92E+00 | 1,00E-01 |
22 | 4 | 2000 | 3,83E+00 | 1,00E-01 |
РЕЦЕНЗИЯ
на дипломный проект на тему:
“Создание моделей свойств двухслойных пленочных структур на основе линейно-цепочечного углерода с помощью DATA MINING ”
выполненый выпускницей факультета ФМФ Хытовой А.Н.
Дипломный проект содержит _55_ стр. пояснительного текста и _11_ страниц графической части.
В дипломном проекте разработаны следующие вопросы:
1. Собраны экспериментальные данные по вольтамперным характеристикам линейно-цепочечного углерода с различными внедренными химическими элементами.
2. Методом
искусственных нейронных сетей
получены вычислительные
Достоинства рецензируемого проекта:
Исследованы возможности применения искусственных нейронных сетей для получения моделей, позволяющих обобщать экспериментальные данные и прогнозировать свойства линейно-цепочечного углерода.
Недостатки рецензируемого проекта:
Есть недостатки в оформлении списка литературы, величину базы данных для построения вычислительных моделей в дальнейшем следует увеличить.
Оценка:
РЕЦЕНЗЕНТ