Понятие и сущность биогеоценоза

Автор работы: Пользователь скрыл имя, 30 Октября 2010 в 22:04, Не определен

Описание работы

Курсовая работа

Файлы: 1 файл

Андрей..doc

— 169.00 Кб (Скачать файл)

     В водных экосистемах прерывание круговорота  углерода связано с включением СО2 в состав известняков, мела, кораллов в виде Са(СО)3. при этом углерод исключается из круговорота на целые геологические эпохи. 
 

3.2 Круговорот фосфора

     Из  всех макроэлементов фосфор - один из самых редких в доступных резервуарах на поверхности Земли. В природе он содержится в различных природных материалах в виде неорганического фосфат-иона (РО3-4). Фосфаты растворимы в воде, но не летучи. При разрушении горных пород или выщелачивании атмосферными осадками соединения фосфора растворяются. Далее из водного раствора поглощается растениями и включается в состав их органических соединений, выступая в дальнейшем в форме «органического фосфата».

     По пищевым цепям фосфор последовательно переходит от растений к организмам всех трофических уровней, и аналогично углероду в каждом из организмов велика вероятность окисления с целью получения необходимой для жизнедеятельности энергии. Если это происходит, то фосфат в составе мочи или ее аналога выводится из организма в окружающую среду, где может снова быть поглощен растениями и вновь запущен в круговорот(Рис.3).

     Принципиально различие круговоротов фосфора и  углерода состоит в наличии либо отсутствии газовой фазы на одном из этапов цикла. Диоксид углерода в газообразном состоянии, попадая в воздух, свободно распространяется в атмосфере, переносясь на неорганиченные расстояния, пока снова не будет усвоен растениями. В круговороте фосфора подобного этапа нет.

     Попадая со сточными водами в водоемы, фосфат насыщает, а порой перенасыщает их экологические системы. Обратно  на сушу фосфор в естественных условиях возвращается практически только с  пометом и после гибели рыбоядных  птиц. Абсолютное большинство фосфатов образует донные отложения, и круговорот вступает в свою самую замедленную фазу. Лишь геологические процессы, протекающие миллионы лет, реально могут поднять океанические отложения фосфатов, после чего возможно повторное включение фосфора в описанный круговорот. 

     

     

     

     

     

     

       
 

       Рисунок 3 – «Структурная схема круговорота фосфора»                                  

     Фосфор  и другие минеральные биогены  циркулируют в пределах экосистемы лишь тогда, когда содержащие их «отходы» жизнедеятельности откладываются в местах поглощения соответствующего элемента. В естественных экосистемах преимущественно так и происходит. Однако вмешательство человека, заключающееся в сборе урожая, содержащего извлеченные из почвы биогены, и перемещение его на большие расстояния к местам потребления нарушает круговорот. Отходы жизнедеятельности человека попадают преимущественно в водоемы. Изъятие фосфора из почв полей в современном сельском хозяйстве компенсируется внесением минеральных фосфорных удобрений, получаемых из природных апатитов, главным месторождением которых в нашей стране является Хибинское. Всего в мире ежегодно добывают 1-2 млн. т фосфорсодержащих пород3. 

3.3 Круговорот азота

     Азот  входит в структуру всех белков и вместе с тем является наиболее литимирующим из биогенных элементов. Колоссальный резерв свободного молекулярного азота в атмосфере лишь в ничтожном размере затрагивается биотическим круговоротом. Общее отношение связанного азота к N2 в природе равно 1:100000. энергия химической связи в молекуле N2 очень велика. Поэтому соединение азота с другими элементами- кислородом и водородом требует больших затрат энергии.

     В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при  нормальных температуре и давлении благодаря высокой эффективности биокатализатора. Считается, что бактерии переводят в связанную форму приблизительно 1млрд т азота в год. В клубеньковых бактериях бобовых растений фиксация азота осуществляется с помощью сложного ферментного комплекса, защищенного от избытка кислорода специальным растительным гемоглобином. Непосредственно продукт биофиксации- аминогруппа NH2  - включается в круговорот, в котором участвуют уже все организмы, но главную роль играют еще три группы почвенных и водных бактерий: нитрифицирующие, нитратообразующие и денитрифицирующие бактерии(Рис.4)

                       

                                              Промышленная фиксация

Рисунок 4 – «Круговорот азота»

      Круговорот азота в биосфере сопряжен с круговоротом углерода, так как соотношение между этими элементами в составе глобальной биомассы постоянно: С : N= 55 : 1. Соответственно и круговорот азота составляет около 1,5 Гт/год. Он замкнут настолько, насколько постоянны общая биомасса и состав экосферы, так как доступные для биоты резервуары связанного азота в почве и в воде достаточно велики по сравнению с круговоротом: приблизительно 40:1.4 

3.4 Круговорот кислорода

      В количественном отношении главной составляющей живой материи является кислород, круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления. В результате возникает множество локальных циклов, происходящих между атмосферой, гидросферой и литосферой.

      Кислород, содержащийся в атмосфере и в  поверхностных минералах (осадочные  кальциты, железные руды), имеет биогенное  происхождение и должно рассматриваться  как продукт фотосинтеза. Этот процесс  противоположен процессу потребления  кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом (отщеплённым от субстрата) и образованием воды. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа. В основном он происходит между атмосферой и живыми организмами.

      Потребление атмосферного кислорода и его  возмещение растениями в процессе фотосинтеза  осуществляется довольно быстро. Расчёты  показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды гидросферы были подвергнуты фотолизу и вновь синтезированы живыми организмами, необходимо два миллиона лет. Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в виде газа или сульфатов, растворённых в океанических и континентальных водах, в несколько раз меньше (0,4*1016 т).

      Отметим, что, начиная с определённой концентрации, кислород очень токсичен для клеток и тканей (даже у аэробных организмов). А живой анаэробный организм не может  выдержать (это было доказано ещё  в прошлом веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%. 

3.5 Круговорот воды

     Вода, как и воздух, - основной компонент, необходимый для жизни. В количественном отношении это самая распространённая неорганическая составляющая живой  материи. Семена растений, в которых содержание воды не превышает 10%, относятся к формам замедленной жизни. Такое же явление (ангидробиоз) наблюдается у некоторых видов животных, которые при неблагоприятных внешних условиях могут терять большую часть воды в своих тканях.

     Вода  в трёх агрегатных состояниях присутствует во всех составных частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся в различных  гидрогеологических формах, равномерно распределить по соответствующим областям земного шара, то образуются слои следующей толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод 15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

     Основную  роль в циркуляции и биогеохимическом круговороте воды играет атмосферная  влага, несмотря на относительно малую толщину её слоя. Атмосферная влага распределена по Земле неравномерно, что обуславливает большие различия в количестве осадков в разных районах биосферы. Среднее содержание водяного пара в атмосфере изменяется в зависимости от географической широты. Например, на Северном полюсе оно равно 2,5 мм (в столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.

     О механизме гидрогеологического  цикла было сказано выше – в  разделе касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем расходуется на просачивание (или инфильтрацию), испарение и сток. Просачивание особенно важно для наземных экосистем, так как способствует снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные горизонты и подземные реки. Испарение с поверхности почвы также играет важную роль в водном режиме местности, но более значительное количество воды выделяют сами растения своей листвой. Причём количество воды, выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения, производящие одну тонну растительной массы, поглощают как минимум 100 т воды.

     Главную роль в круговороте воды на континентах  играет суммарное испарение (деревья  и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный сток и ресурсы подземных водоносных слоёв обеспечивают питание водных потоков. Вместе с тем при уменьшении плотности растительного покрова сток становится основной причиной эрозии почвы.

     Как уже отмечалось, вода участвует и  в биологическом цикле, являясь  источником кислорода и водорода. Однако фотолиз её при фотосинтезе не играет существенной роли в процессе круговорота. 

3.6 Круговорот серы 

     В биосфере сформировался достаточно развитый процесс циклических преобразований серы и ее соединений. Выделяются резервные фонды этого элемента в почве и отложениях (довольно обширные), а также в атмосфере (небольшие). В обменном фонде серы основная роль принадлежит специализированным микроорганизмам, одни виды которых выполняют реакцию окисления, другие — восстановления. На круговоротах азота и серы все больше сказывается промышленное загрязнение воздуха. Сжигание ископаемого топлива существенно увеличивает поступление в атмосферу (и. разумеется, содержание в ней) летучих окислов азота (NО и NО2,) и серы (SO2), особенно в городах. Нынешняя концентрация этих ингредиентов уже становится опасной для биотических компонентов экосистем. 

3.7.Круговорот  калия 

     Калий, как известно, принимает участие  в процессах фотосинтеза, оказывает  влияние на углеводный, азотный и  фосфорный обмен, существенным образом сказывается на осмотических свойствах клеток. Он концентрируется в плодах и семенах, в интенсивно растущих тканях и органах растений.

     Пока  что малоизученным остается круговорот калия в водной среде. Каждый год  с водным стоком в Мировой океан поступает около 90 млн т этого элемента. Какая-то часть поглощается водными организмами, но значительное количество нигде не фиксируется, и последующее его перемещение неизвестно.

     Важной  составной частью круговоротов является ионный и твердый сток. Круговорот химических элементов проходит, как правило, сразу в нескольких сопредельных оболочках Земли (атмосфере и гидросфере, гидросфере и педосфере) либо во всех трех геосферах одновременно. Надежность и постоянство осуществления круговоротов обеспечиваются регулярным обменом веществ и энергией между геосферами. Такого рода направленная связь наглядно проявляется на примере ионного стока, представляющего собой процесс выноса реками с суши химических элементов в ионном растворенном состоянии в Мировой океан. Поступившие в ионной форме химические элементы, как и на суше, в водной среде подвергаются воздействию живых организмов, продолжая круговорот. Миграция химических элементов в растворенном состоянии представляет собой гигантский планетарный процесс.

Информация о работе Понятие и сущность биогеоценоза