Автор работы: Пользователь скрыл имя, 23 Февраля 2015 в 14:14, реферат
Проблема использования МС возникла на заре промышленного производства сыра, творога и казеина, масса которых составляет 10–20% молока, в то время как 80–90% приходится на МС. В МС содержится 50% сухих веществ молока, включающих до 250 различных соединений (в т. ч. азотистые, микро и макро соединения, молочный жир, минеральные соли, лактоза, витамины, ферменты, органические кислоты).
Введение
1. Состав и свойства МС 5-8
2. Методы переработки МС 8-9
2.1 Тепловые методы 9
2.2 Охлаждение 9
2.3 Пастеризация 10
2.4 Центробежные методы 10-11
2.5 Консервирование 11-12
2.6 Биологические методы 12
3. Обработка МО 12- 14
3.1 Обработка ферментными препаратами 14-15
3.2 Мембранные методы 15-17
4. Продукты из МС 17-18
5. Перспективные способы повышения экологической безопасности промышленности 18-20
Заключение 20-21
Сокращения 21
Список использованной литературы 22
2. Методы переработки МС
Конечный вид продуктов из МС определяет и выбор оборудования для производства. Уже с момента, как сыворотка удаляется из сырной ванны, к ней необходимо относиться как к высококачественному продукту и для сохранения ее свойств очень важно соблюдать технологию на всех этапах переработки. Прежде всего, ее освобождают от мелких сырных частиц для упрощения дальнейших операций и для улучшения функциональных свойств конечного продукта (например, растворимости). Далее снижают массовую долю жира до 0,05 %, что продлевает срок эффективной работы фильтрующих мембран, т. к. жир может закупорить поры мембраны. Потом следует тепловая обработка, вид которой зависит от микробиологического качества сыворотки, необходимости ее хранить, транспортировать или сразу перерабатывать, а также от требований, предъявляемых к конечному продукту. Таким образом, получается предварительно обработанная сыворотка – основа для производства разных видов продуктов.
Существуют несколько способов переработки МС:
2.1 Тепловые методы
Тепловые методы используются для охлаждения МС с целью сохранения ее качества при временном хранении, подогрева – с целью пастеризации, выделения сывороточных белков, проведения некоторых других технологических операций.
2.2 Охлаждение
Охлаждение предотвращает развитие нежелательных микробиологических процессов при временном хранении сырья и продуктов. В частности, в случаях, когда их переработка, использование или реализация задерживаются. Охлаждение необходимо проводить немедленно после получения МС или ее сепарирования, не допуская обсеменения посторонней микрофлорой. Наилучшие результаты дает охлаждение в сочетании с предварительной пастеризацией.
2.3 Пастеризация
Процесс пастеризации МС в большинстве случаев обусловлен необходимостью подавить развитие нежелательной микрофлоры. Источниками микрофлоры могут быть специально вводимые закваски при производстве ОП; возможно также обсеменение посторонней микрофлорой при сборе и хранении МС. При пастеризации подсырной сыворотки инактивируются остатки сычужного фермента, присутствие которого в ряде случаев нежелательно.
Выбор режима и способа пастеризации обусловлен требованиями процесса производства продукта или полуфабриката. В трубчатых пастеризационных установках сыворотку подогревают до 60-65°C, затем до более высокой температуры (93±2°С) введением пара. После этого сыворотку направляют в резервуар для отваривания альбумина.
Пастеризацию проводят по одному из режимов: низкотемпературному (медленному) – 63-65°C с выдержкой 30 мин, или быстрому – 72°C с выдержкой 15-20 сек. Оба метода имеют достоинства и недостатки: при первом не происходит образования пригара, но требуются значительные затраты времени дополнительные емкости для выдержки; при втором – процесс идет быстро, но требуется более частая чистка установок от пригара. В настоящее время ведутся поиски по созданию конструкции пастеризаторов, позволяющих проводить высокотемпературную пастеризацию без пригорания.
2.4 Центробежные методы
Центробежные методы (сепарирование, центрифугирование) используются для выделения из МС жира, казеиновой пыли, коагулированных сывороточных белков, отделения кристаллов сахара, некоторых других технологических процессов.
Сепарирование используют на двух этапах промышленной переработки МС: для выделения молочного жира и казеиновой пыли (обезжиривание) и для отделения коагулированных сывороточных белков (осветление). Молочный жир и сывороточные белки – энергетически и биологически важные компоненты. Их используют для пищевых целей. Удаление их необходимо также для обеспечения качества продукта (напитков, молочного сахара). После выделения жира и казеиновой пыли МС представляет собой кинетически устойчивую систему, практически не подвергающуюся расслоению.
2.5 Консервирование
Для сохранения первоначальных свойств МС и некоторых полуфабрикатов помимо пастеризации и охлаждения могут применяться различные способы консервирования.
Консервирование – такая обработка МС, в результате которой продукты сохраняются длительное время без порчи (без разложения белков, жиров, углеводов и др. компонентов). Важно также наиболее полно сохранить основные свойства продукта (вкус, внешний вид, биологическую и пищевую ценность) при наименьших затратах. В основе консервирования – прекращение жизнедеятельности МО, которые могут вызвать порчу продуктов, или прекращение биохимических процессов, происходящих в продуктах под влиянием ферментов, а также торможение окислительно-восстановительных реакций.
Для консервирования МС применяются способы:
Применение их определяется назначением продукта, возможностями предприятия и экономическими соображениями.
2.6 Биологические методы
Биологическая обработка МС повышает ее питательную ценность за счет обогащения полезными веществами, а также получения ряда специфических продуктов. Основные направления биологической обработки: синтез белковых веществ дрожжами, использующими лактозу; гидролиз лактозы ферментами до более сладких моноз; микробный синтез витаминов, жира, ферментов и АБ; переработка лактозы в молочную кислоту и этиловый спирт; расщепление молочных белков до свободных аминокислот.
3. Обработка МО
Использование МО – один из основных методов обогащения молочного сырья, в том числе и МС, белком. На этом методе основано производство широкого ассортимента продуктов и полуфабрикатов для пищевых (напитки, сыворотка для хлебопекарной и кондитерской промышленности), кормовых (сыворотка обогащенная, закваски для силосования кормов,) и технических (этиловый спирт, молочная кислота, столовый уксус, лизин и др.) целей. Для этого в МС после предварительной обработки вносят различные закваски, которые готовят на чистых культурах определенных видов МО (молочнокислых, уксуснокислых бактерий, дрожжей).
В результате молочно-кислого брожения происходит расщепление лактозы до глюкозы и галактозы и далее до молочной кислоты:
С12Н22О11 + Н2О = 4СН3СНОНСООН.
лактоза молочная кислота
Параллельно с молочнокислым брожением, как правило, протекают побочные процессы, которые обусловливают накопление продуктов распада лактозы – летучих кислот, спиртов, диацетила. Брожение прекращается самопроизвольно, когда МО расщепляют лишь часть (20%) лактозы, поскольку образующаяся молочная кислота губительно действует на их развитие.
Получение этилового спирта из МС основано на сбраживании лактозы специальными видами дрожжей до спирта и углекислоты:
С12Н22О11 + Н2О =СН3СН2ОН + 4СО2
лактоза спирт этиловый
Считается, что на спирт расходуется до 95% молочного сахара, а 5% идет на образование массы дрожжевых клеток и побочных продуктов спиртового брожения. Суть технологии состоит в том, что исходную МС очищают от белков, вносят дрожжи и ведут процесс брожения при 33-34°С в течение 48-72 ч. Затем дрожжи отделяют от бражки (например, центрифугированием), а последнюю подвергают дистилляции. Выход спирта в условиях промышленного производства составляет 84%. Побочными продуктами процесса получения спирта являются сывороточные белки, которые могут использоваться на пищевые цели, а также послеспиртовая бражка, которая может использоваться на корм сельскохозяйственным животным.
Наиболее приемлемый продуцент белка в МС – дрожжи, использующие для питания лактозу. Дрожжевая сыворотка по содержанию белка превосходит исходную. Кроме дрожжей, микробный белок на МС синтезируют плесени. При этом сыворотку целесообразно обогащать солями марганца или цинка и вносить азотсодержащие соединения. Также для улучшения культивирования плесени вносят бактерии E. coli. Обогащенная микробным белком и витаминами МС является основой био-ЗЦМ для телят. Для дрожжевания применяют свежую творожную или подсырную сыворотку, из которой удалены белки. Процесс ферментации осуществляется в аппаратах с мешалкой при постоянном поступлении воздуха до полного использования лактозы. Далее – температурная обработка для инактивации живых клеток, сгущение до 40% сухого вещества.
Для очистки перед дрожжеванием сыворотку нагревают (90°C) в сочетании с кислотной коагуляцией (соляная или молочная кислота) для подсырной и раскислением (водный раствор аммиака) для творожной сыворотки. Для интенсификации накопления биомассы вводят минеральные вещества.
3.1 Обработка ферментными
Применение ферментов значительно увеличивает скорость химических превращений, что позволяет сократить продолжительность многих технологических процессов. С помощью ферментов может быть обеспечена также определенная направленность процессов при получении ценных компонентов продуктов питания.
Для гидролиза лактозы используют фермент β-галактозидазу. В результате гидролиза плохо растворимый и несладкий молочный сахар (лактоза) превращается в более сладкую и хорошо растворимую смесь моносахаров (глюкозы и галактозы), что позволяет широко использовать фермент для производства пищевых и кормовых продуктов.
С12Н22О11 + Н2О = С6Н12О6 + С6 Н12О6
лактоза глюкоза галактоза
В результате гидролиза в моносахара превращается до 50—70% лактозы, увеличиваются сладость и усвояемость готового продукта.
Натуральная МС содержит значительное количество ароматических соединений. Технологическая обработка и гидролиз увеличивают их количество, что благоприятно отражается на возможности использования в хлебопечении, производстве безалкогольных напитков и других пищевых продуктов.
Гидролиз белков МС до пептидов и аминокислот осуществляется для повышения биологической ценности и качества (прозрачность и отсутствие осадка) продуктов. Наиболее эффективны следующие протеолитические ферменты: протеазы Actinomyces vulgaris (88% гидролиза), трипсин (76), протофрадин и панкреатин (67), куриный пепсин (54), протоальбин (47). В процессе гидролиза в МС изменяется количество аминокислот. В гидролизованной МС содержится весь набор аминокислот, заметно увеличивается их содержание в сравнении с исходной сывороткой, особенно лейцина и глутаминовой кислоты. Появляются оксиаминокислоты (серин, треонин), двухосновные (гистидин, аргинин), а также ароматические и серосодержащие аминокислоты.
Из такой МС готовят сгущенные и сухие обогащенные концентраты. В производстве молочного сахара гидролиз белков позволяет улучшить его качество и стабилизировать технологический процесс. На основе ферментации МС можно приготовить белковые гидролизаты для микробиологических питательных сред.
3.2 Мембранные методы
Мембранные методы можно разделить на два основных: гиперфильтрация (микрофильтрация, ультрафильтрация, обратный осмос) и электродиализ. К мембранным относят также условно ионный обмен, гель-фильтрацию, сорбцию-десорбцию. Основаны эти методы на свойствах МС как гетерогенной системы с четко выраженной селективность компонентов по молекулярной массе, размерам и ионной силе. Наибольший интерес представляют гиперфильтрация, электродиализ и обратный осмос. Ионный обмен и гель-фильтрация широкого применения пока не нашли.
Основной деталью мембранных установок являются специальные полупроницаемые мембраны с различным диаметром пор, соизмеримых с молекулами находящихся в растворе компонентов. В зависимости от диаметра пор мембраны происходит разделение находящихся в растворе компонентов: компоненты с размерами менее диаметра пор проходят через мембрану, а компоненты с большими размерами задерживаются. Получаются два раствора с различными компонентами.
Гиперфильтрация – физический способ разделения растворов через полупроницаемую перегородку с порами от 1 до 1000 нм. Процесс основан на принципе обратного осмоса. Часть компонентов раствора и растворитель за счет давления проходит через мембрану, другая (белки) задерживается. Происходит концентрация раствора.
Проницаемость всех видов мембран во время работы снижается, что обусловлено концентрационной поляризацией (слой раствора с повышенной концентрацией на поверхности фильтра). Осмотическое давление и гидродинамическое сопротивление увеличиваются. Для уменьшения этого эффекта раствор перемешивают или резко увеличивают скорость его прохождения через мембрану.
Достоинства мембранных способов:
В зависимости от пористости мембраны и эффективности разделения выделяют виды гиперфильтрации:
Информация о работе Переработка отходов производства органических продуктов и изделий на их основе