Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 16:20, Не определен
Взаимодействие организма и среды
Условия и ресурсы среды
Популяции
Сообщества
Экосистемы
Биосфера
Человек в биосфере
Глобальные экологические проблемы
Экономика и правовые основы природопользования
Защита окружающей среды. Заключение
Пространственно-временные
границы экосистем могут
Биогеоценозы. Параллельно с учением об экосистемах развивалось и учение о биогеоценозах, созданное Владимиром Николаевичем Сукачевым (1942).
Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, растительности, животного мира и микроорганизмов, почвы, горной породы и гидрологических условий), имеющая свою особую специфику взаимодействий слагающих компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии.
Биогеоценозы характеризуются следующими чертами:
– биогеоценоз связан с определенным участком земной поверхности; в отличие от экосистемы пространственные границы биогеоценозов не могут быть проведены произвольно;
– биогеоценозы существуют длительное время;
– биогеоценоз – это биокосная система, представляющая собой единство живой и неживой природы;
– биогеоценоз – это элементарная биохорологическая ячейка биосферы (то есть биолого-пространственная единица биосферы);
– биогеоценоз
– это арена первичных
Таким образом,
как и экосистема, биогеоценоз
представляет собой единство биоценоза
и его неживой среды обитания;
при этом основой биогеоценоза является
биоценоз. Понятия экосистемы и биогеоценоза
внешне сходны, но, в действительности,
они различны. Иначе говоря, любой
биогеоценоз – это экосистема,
но не любая экосистема
– биогеоценоз.
Поддержание жизнедеятельности организмов и круговорот веществ в экосистеме возможны только за счет постоянного притока высокоорганизованной энергии. Основным первичным источником энергии на Земле является солнечная энергия.
В экосистемах наблюдается постоянный поток энергии, которая переходит из одной формы в другую.
Фотосинтезирующие организмы переводят энергию солнечного света в энергию химических связей органических веществ. Эти организмы являются производителями, или продуцентами органического вещества. В большинстве случаев функции продуцентов в экосистемах выполняют растения.
Гетеротрофные организмы получают энергию при поглощении органических веществ и называются потребителями, или консументами. Существуют консументы первого порядка (растительноядные организмы, или фитофаги), второго порядка (организмы, питающиеся фитофагами, или зоофаги) и высших порядков (хищники и сверх–хищники, паразиты и сверх–паразиты). В большинстве случаев функции консументов в экосистемах выполняют животные. Организмы, которые специализируются на добывании строго определенной пищи, называются монофаги. Организмы, которые могут питаться различной пищей, называются полифаги. Для полифагов характерен широкий спектр питания, включающий основную, второстепенную и случайную пищу.
Погибшие организмы и отходы жизнедеятельности в любой форме потребляются организмами, разрушающими мертвое органическое вещество до неорганических веществ – редуцентами, или деструкторами. К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:
– некрофаги – трупоеды;
– копрофаги (копрофилы, копротрофы) – питаются экскрементами;
– сапрофаги (сапрофиты, сапрофилы, сапротрофы) – питаются мертвым органическим веществом (опавшими листьями, линочными шкурками); к сапрофагам относятся:
– ксилофаги (ксилофилы, ксилотрофы) – питаются древесиной;
– кератинофаги (кератинофилы, кератинотрофы) – питаются роговым веществом;
– детритофаги – питаются полуразложившимся органическим веществом;
– окончательные минерализаторы – полностью разлагают органическое вещество.
Продуценты
и редуценты обеспечивают круговорот
веществ в экосистеме: окисленные формы
углерода и минеральных веществ превращаются
в восстановленные и наоборот; происходит
превращение неорганических веществ в
органические, а органических – в неорганические.
При последовательной передаче энергии от одних организмов к другим образуются пищевые (трофические) цепи.
Трофические цепи, которые начинаются с продуцентов, называются пастбищные цепи, или цепи выедания. Отдельные звенья пищевых цепей называются трофические уровни. В пастбищных цепях выделяют следующие уровни:
1-й уровень – продуценты (растения);
2-й уровень – консументы первого порядка (фитофаги);
3-й уровень – консументы второго порядка (зоофаги);
4-й уровень – консументы третьего порядка (хищники);
5-й уровень – консументы высших порядков (сверх–хищники, паразиты и сверх–паразиты).
Погибшие организмы и отходы жизнедеятельности каждого уровня разрушаются редуцентами. Трофические цепи, которые начинаются с редуцентов, называются детритные цепи. Детритные цепи являются основой существования зависимых экосистем, в которых органического вещества, произведенного продуцентами, недостаточно для обеспечения энергией консументов (например, глубоководные экосистемы, экосистемы пещер, экосистемы почвы). В этом случае существование экосистемы возможно за счет энергии, содержащейся в мертвом органическом веществе.
Органическое вещество, находящееся на каждом трофическом уровне, может потребляться различными организмами и различными способами. Один и тот же организм может относиться к разным трофическим уровням. Таким образом, в реальных экосистемах пищевые цепи превращаются в пищевые сети.
Ниже приведен
фрагмент пищевой сети смешанного леса.
Количество энергии, проходящее через трофический уровень на единице площади за единицу времени, называется продуктивностью трофического уровня. Продуктивность измеряется в ккал/га·год или других единицах (в тоннах сухого вещества на 1 га за год; в миллиграммах углерода на 1 кв. метр или на 1 куб. метр за сутки и т. д.).
Энергия, поступившая на трофический уровень, называется валовой первичной продуктивностью (для продуцентов) или рационом (для консументов). Часть этой энергии расходуется на поддержание процессов жизнедеятельности (метаболические затраты, или затраты на дыхание), часть – на образование отходов жизнедеятельности (опад у растений, экскременты, линочные шкурки и иные отходы у животных), часть – на прирост биомассы. Часть энергии, затраченная на прирост биомассы, может быть потреблена консументами следующего трофического уровня.
Энергетический баланс трофического уровня может быть записан в виде следующих уравнений:
(1) валовая первичная продуктивность = дыхание + опад + прирост биомассы
(2) рацион = дыхание + отходы жизнедеятельности
+ прирост биомассы
Первое уравнение применяется по отношению к продуцентам, второе – по отношению к консументам и редуцентам.
Разность
между валовой первичной
При переходе
энергии с одного уровня на другой
часть ее безвозвратно теряется: в
виде теплового излучения (затраты
на дыхание), в виде отходов жизнедеятельности.
Поэтому количество высокоорганизованной
энергии постоянно уменьшается
при переходе с одного трофического
уровня на последующий. В среднем
на данный трофический уровень поступает
≈ 10 % энергии, поступившей на предыдущий
трофический уровень; эта закономерность
называется правилом «десяти процентов»,
или правилом
экологической пирамиды. Поэтому
количество трофических уровней всегда
ограничено (4-5 звеньев), например, уже
на четвертый уровень поступает только
1/1000 часть энергии от поступившей на первый
уровень.
В формирующихся экосистемах на образование вторичной продукции расходуется лишь часть прироста биомассы; в экосистеме происходит накопление органического вещества. Такие экосистемы закономерно сменяются другими типами экосистем. Закономерная смена экосистем на определенной территории называется сукцессия. Пример сукцессии: озеро → зарастающее озеро →болото → торфяник → лес.
Различают следующие формы сукцессий:
– первичные – возникают на ранее незаселенных территориях (например, на незадернованных песках, скалах); биоценозы, первоначально формирующиеся в таких условиях, называются пионерными сообществами;
– вторичные – возникают в нарушенных местообитаниях (например, после пожаров, на вырубках);
– обратимые – возможен возврат к ранее существовавшей экосистеме (например, березняк → гарь → березняк → ельник);
– необратимые – возврат к ранее существовавшей экосистеме невозможен (например, уничтожение реликтовых экосистем; реликтовая экосистема – это экосистема, сохранившаяся от прошлых геологических периодов);
– антропогенные – возникающие под воздействием человеческой деятельности.
Накопление
органического вещества и энергии
на трофических уровнях приводит
к повышению устойчивости экосистемы.
В ходе сукцессии в определенных
почвенно-климатических
В деградирующих
(зависимых) экосистемах энергетический
баланс отрицательный – энергии, поступившей
на низшие трофические уровни, недостаточно
для функционирования высших трофических
уровней. Такие экосистемы неустойчивы
и могут существовать только при дополнительных
затратах энергии (например, экосистемы
населенных пунктов и антропогенных ландшафтов).
Как правило, в деградирующих экосистемах
число трофических уровней снижается
до минимума, что еще больше увеличивает
их неустойчивость.
Антропогенные экосистемы
К основным
типам антропогенных экосистем
относятся агробиоценозы и
Агробиоценозы – это экосистемы, созданные человеком для получения сельскохозяйственной продукции.
В результате севооборотов в агробиоценозах обычно происходит смена видового состава растений. Поэтому при описании агробиоценоза дается его характеристика на протяжении нескольких лет.
Особенности агробиоценозов:
– обедненный видовой состав продуцентов (монокультура);
– систематический вынос элементов минерального питания с урожаем и необходимость внесения удобрений;
– благоприятные
условия для размножения
– необходимость уничтожения сорняков – конкурентов культурных растений;
– сокращение числа трофических уровней в связи с обедненностью видового разнообразия; упрощение цепей (сетей) питания;
– невозможность
самовоспроизведения и
Для поддержания устойчивости агробиоценозов необходимы дополнительные затраты энергии. Например, в экономически развитых странах для производства одной пищевой калории затрачивается 5-7 калорий энергии ископаемого топлива.