Альтернативные источники энергии

Автор работы: Пользователь скрыл имя, 13 Сентября 2015 в 21:18, реферат

Описание работы

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

Содержание работы

Введение………………………………………….………………………………3
Первые опыты использования солнечной энергии…………………………....4
Преобразование солнечной энергии в теплоту, работу и электричество…....5
Башенные и модульные электростанции………………..………………….….6
Солнечные батареи…………………………………..……………………….…8
Солнечный пруд………………………………..………………………………..9
Солнечные коллекторы и аккумуляторы теплоты……………………………10
Солнечные установки коммунально-бытового назначения………………….12
Солнечные водонагревательные установки………………………………...…12
Система солнечного теплоснабжения зданий…………………………….......14
Пассивные гелиосистемы отопления зданий…………………...…………….14
Активные гелиосистемы отопления зданий……………………………...…...15
Электроэнергия из космоса……………………………………………………..17
Список используемой литературы……………………………………………..21

Файлы: 1 файл

23.doc

— 778.50 Кб (Скачать файл)

Солнечные батареи пока используются в основном в космосе,  а на Земле только для энергоснабжения автономных потребителей мощностью до 1 кВт, питания радионавигационной и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолетов. В 1988 г. в Австралии состоялись первые всемирные ралли солнечных автомобилей. По мере совершенствования солнечных батарей они будут находить применение в жилых домах для автономного энергоснабжения, т.е. отопления и горячего водоснабжения, а также для выработки электроэнергии для освещения и питания бытовых электроприборов.

В ряде стран разрабатываются гелиоэнергетические установки с использованием так называемых солнечных прудов.

Солнечный пруд

СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом.

В солнечном пруду происходит одновременное улавливание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естественных соленых озерах температура воды у дна может достигать 70 оС. Это обусловлено высокой концентрацией соли. В обычном водоеме поглощаемая солнечная энергия нагревает в основном поверхностный слой и эта теплота довольно быстро теряется, особенно в ночные часы и при холодной ненастной погоде из-за испарения воды и теплообмена с окружающим воздухом. Солнечная энергия, проникающая через всю массу жидкости в солнечном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90-100  оС, в то время как температура поверхностного слоя остается на уровне 20  оС. Благодаря высокой теплоемкости воды в солнечном пруду за летний сезон накапливается большое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда

Обычно глубина пруда составляет 1-3 м. На 1 м 2 площади пруда требуется 500-1000 кг поваренной соли, ее можно заменить хлоридом магния.

Наиболее крупный из существующих солнечных прудов находится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 250 000 м 2 . Он используется для производства электроэнергии. Электрическая мощность энергетической установки, работающей по циклу Ренкина, равна 5 МВт.  Себестоимость 1 кВт*ч электроэнергии значительно ниже, чем на СЭС других типов.

Описанный эффект достигается благодаря тому, что по глубине солнечного пруда поддерживается градиент поваренной соли, направленный сверху вниз, т.е. весь объем жидкости как бы разделен на три зоны, концентрация соли по глубине постепенно увеличивается и достигает максимального значения на нижнем уровне. Толщина этого слоя составляет 2/3 общей глубины водоема. В нижнем конвективном слое концентрация соли максимальна и равномерно распределена в объеме жидкости. Итак, плотность жидкости максимальна у дна пруда и минимальна у его поверхности в соответствии с распределением концентрации соли. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами солнечной энергии. Отвод теплоты из солнечного пруда может осуществляться либо посредством змеевика, размещенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором циркулирует теплоноситель. При первом способе меньше нарушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.

Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах конденсирования воздуха абсорбционного типа, для производства электроэнергии.

Солнечные коллекторы и аккумуляторы теплоты

 

Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого либо другого теплоносителя. Различают два типа солнечных коллекторов - плоские и фокусирующие. В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих - с концентрацией, т.е. с увеличением плотности поступающего потока радиации. Наиболее распространенным типом коллекторов в низкотемпературных гелиоустановках является плоский коллектор солнечной энергии (КСЭ). Его работа основана на принципе “горячего ящика”. Для того чтобы изготовить плоский КСЭ, необходима прежде всего лучепоглощающая поверхность, имеющая надежный контакт с рядом труб или каналов для движения нагреваемого теплоносителя. Совокупность плоской лучепоглощающей поверхности и труб (каналов) для теплоносителя образует единый конструктивный элемент - абсорбер. Для лучшего поглощения солнечной энергии верхняя поверхность абсорбера должна быть окрашена в черный цвет или должна иметь специальное поглощающее покрытие.  Максимальная температура, до которой можно нагреть теплоноситель в плоском коллекторе, не превышает 100 оС. К числу принципиальных преимуществ плоского КСЭ по сравнению с коллекторами  других типов относится его способность улавливать как прямую (лучистую), так и рассеянную солнечную энергию и как следствие этого - возможность его стационарной установки без необходимости слежения за Солнцем.

Абсорбер плоского коллектора солнечной энергии, как правило, изготавливается из металла с высокой теплопроводимостью, а именно из стали, алюминия и даже из меди.

При использовании концентраторов, т.е. оптических устройств типа зеркал или линз, достигается повышение плотности потока солнечной энергии. Это имеет место в фокусирующих коллекторах солнечной энергии, требующих специального механизма для слежения за Солнцем. Зеркала - плоские, параболоидные или параболо-цилиндрические - изготовляют из тонкого металлического листа или фольги или других материалов с высокой отражающей способностью; линзы - из стекла или пластмасс. Фокусирующие коллекторы обычно применяют там, где требуются высокие температуры (солнечные электростанции, печи, кухни и т.п. В системах теплоснабжения зданий они как правило не используются.

 

Необходимость аккумулирования теплоты в гелиосистемах обусловлена несоответствием во времени и по количественным показателям поступления солнечной радиации и теплопотребления. Поток солнечной энергии изменяется в течение суток от нуля в ночное время до максимального значения в солнечный полдень. Поскольку тепловая нагрузка отопления максимальна в декабре - январе, а поступление солнечной энергии в этот период минимально, для обеспечения теплопотребления необходимо улавливать солнечной энергии больше, чем требуется в данный момент, а избыток накапливать в аккумуляторе теплоты.

Аккумуляторы можно классифицировать по характеристике физико-химических процессов, протекающих в теплоаккумулирующих материалах (ТАМ):

аккумуляторы емкостного типа, в которых используется теплоемкость нагреваемого (охлаждаемого) аккумулирующего материала без изменения его агрегатного состояния (природный камень, галька, вода, водные растворы солей и др.);

аккумуляторы фазового перехода вещества, в которых используется теплота плавления (затвердевая) вещества;

аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фотохимических реакциях.

 

 

 

Солнечные установки коммунально-бытового назначения

Солнечные водонагревательные установки

 

Сейчас во всем мире в эксплуатации находится более 5 млн. солнечных водонагревательных установок, используемых в индивидуальных жилых домах, централизованных системах горячего водоснабжения жилых и общественных зданий, включая гостиницы, больницы, спортивно-оздоровительные учреждения и т.п. Налажено промышленное производство солнечных водонагревателей в таких странах, как Япония, Израиль, Кипр, США, Австралия, Индия, Франция, ЮАР и др.

На отопление, горячее водоснабжение и кондиционирование воздуха в жилых , общественных и промышленных зданиях расходуется 30-35 % общего годового энергопотребления.

В районах, имеющих более 1800 ч солнечного сияния в год, целесообразно использовать солнечную энергию для теплоснабжения зданий. Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быстрой окупаемости.

По принципу работы солнечные водонагревательные установки можно разделить на два типа: установки с естественной и принудительной циркуляцией теплоносителя. В последние годы все больше производится пассивных водонагревателей, которые работают без насоса, а следовательно, не потребляют электроэнергию. Они проще в конструктивном отношении, надежнее в эксплуатации, почти не требуют ухода, а по своей эффективности практически не уступают солнечным водонагревательным установкам с принудительной циркуляцией.

Солнечная водонагревательная установка с естественной циркуляцией содержит коллектор солнечной энергии, бак-аккумулятора подводится холодная вола (ХВ), и из его верхней части отводится потребителям горячая вода (ГВ). Перечисленные элементы образуют контур естественной циркуляции воды. По подъемной трубе горячая вода из коллектора солнечной энергии поступает а бак-аккумулятор, а по отпускной трубе из бака в коллектор поступает более холодная вода для нагрева за счет поглощенной солнечной энергии. Поскольку средняя температура воды в подъемной трубе выше, чем в отпускной, плотность воды, напротив, ниже во второй трубе. И вследствие этого возникает разность давлений (Па), вызывающая движение воды в контуре циркуляции: Dp=gH (p1 -p2),  где g -ускорение свободного падения, равное для равниных районов 9,81 м/с2 ; H- разность отметок низа солнечного коллектора (нулевой уровень) и места подвода горячей воды в бак-аккумулятор, м; p1 - плотность воды в подъемной трубе при температуре Т2 кг/м3.

Очевидно, что чем больше разность температур воды, тем больше разность давлений и интенсивнее движение воды, Аналогичное влияние оказывает увеличение разности отметок H.

Непременным  условием эффективной работы солнечной водонагревательной установки термосифонного типа является тепловая изоляция всех нагретых поверхностей - прежде всего бака-аккумулятора, подъемной и отпускной труб, патрубка для отвода горячей воды к водоразборным кранам или душу и воздушника.

В условиях холодного климата в солнечном коллекторе следует использовать незамерзающий теплоноситель - смесь воды с этилен- или пропеленглиголем, глизантин (смесь воды с глицерином) и др.

Солнечные водонагревательные установки с естественной циркуляцией теплоносителя являются саморегулирующимися системами, и расход жидкости в них полностью определяется интенсивностью поступающего солнечного излучения, а также теплотехническими и гидравлическими характеристиками солнечного коллектора, бака-аккумулятора и соединительных трубопроводов.

Установки с принудительной циркуляцией теплоносителя целесообразно использовать для горячего водоснабжения крупных объектов. В них солнечный  коллектор представляет собой  большой массив модулей КСЭ. Эти установки имеют большую термопроизводительность, но, как правило, они довольно сложны.

Принципиальная схема установки с циркуляцией  воды в контуре КСЭ с помощью насоса подачей холодной воды в бак-аккумулятор и регулированием температуры горячей воды, поступающей к потребителю, путем подмешивания холодной воды в смесительном клапане показана на рисунке.

Солнечные водонагреватели могут использоваться в качестве первой ступени для предварительного подогрева воды в обычных топливных системах горячего водоснабжения.

По экономическим соображениям за счет солнечной энергии целесообразно покрывать до 80 % нагрузки горячего водоснабжения, поэтому необходимо использовать  наряду с коллекторами солнечной энергии (КСЭ) также дополнительные источники энергии (ДИЭ).

В качестве ДИЭ может использоваться электронагреватель или топливный котел.  Для индивидуальных потребителей следует рекомендовать использовать водонагреватели с естественной циркуляцией воды или компактные устройства, поскольку они имеют хорошую эффективность при невысокой цене и просты в конструктивном отношении, а следовательно, и надежны.

 

Система солнечного теплоснабжения зданий

 

Различают активные и пассивные системы солнечного теплоснабжения зданий. Характерным признаком активных систем является наличие коллектора солнечной энергии, аккумулятора теплоты, дополнительного источника энергии, трубопроводов, теплообменников, насосов или вентиляторов и устройств для автоматического контроля и управления. В пассивных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструкции здания, а движение теплоносителя (воздуха) осуществляется  за счет естественной конверции  без применения вентилятора. В странах ЕЭС в 2000 г. пассивные гелиосистемы будут давать экономию 50 млн. т нефти в год.

В зданиях, в которых предусматривается эффективное использование солнечной энергии, должен быть обеспечен высокий уровень сохранения энергии, особенно в условиях холодного климата. При этом мощность гелиосистемы и дополнительного источника энергии, а также их размеры и стоимость будут минимальными.

Пассивные гелиосистемы отопления зданий

 

Для отопления зданий используются следующие типы пассивных гелиосистем:

С прямым улавливанием солнечного излучения, поступающего через здания или через примыкающую к южной стене здания солнечную теплицу (зимний сад, оранжерею).

С непрямым улавливанием солнечного излучения, т.е. с теплоаккумулирующей стеной, расположенной за остеклением южного фасада;

С контуром конвективной циркуляции воздуха и галечным аккумулятором теплоты.  Кроме того, могут использоваться гибкие системы, включающие элементы пассивной и активной гелиосистемы.

Пассивные системы составляют интегральную часть самого здания, которое должно проектироваться таким образом, чтобы обеспечивать наиболее эффективное использование солнечной энергии для отопления. Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения также используются остекленные проемы в крыше и дополнительные окна в верхней части здания, которые повышают уровень комфорта человека, так как исключают прямое попадание солнечных лучей в лицо. Одно из важнейших  условий эффективности работы пассивной гелиосистемы заключается в правильном выборе местоположения и ориентации здания на основе критерия максимального поступления и улавливания солнечного излучения в зимние месяцы.

Информация о работе Альтернативные источники энергии