Автор работы: Пользователь скрыл имя, 03 Февраля 2011 в 17:52, лекция
Для количественных оценок надежности используют различные характеристики и параметры, относящиеся к событиям как появление отказа или случайной ошибки функционирования, что позволяет предупредить или устранить их.
Основные
определения теории
надежности.
Общие положения
Важнейшим эксплуатационным показателем качества системы является надежность. Недостаточно высокий уровень, которой приводит к снижению эффективности систем и ошибочным действиям в решении задач. Надежность систем взаимосвязана как с техническими, так и с экономическими требованиями. Надежность характеризует ожидаемое поведение системы в смысле отказа или кратковременная ошибка ее функционирования в заданном интервале времени. Отказ заключается в потере работоспособности, которая м.б. восстановлена только путем внешнего вмешательства.
Случайная
ошибка функционирования (сбой) проявляется
в кратковременном случайном
нарушении выполнения к.л. функции.
Если нарушение носит
Для количественных оценок надежности используют различные характеристики и параметры, относящиеся к событиям как появление отказа или случайной ошибки функционирования, что позволяет предупредить или устранить их.
Важнейшими из характеристик являются:
- среднее время наработки до отказа;
- готовность аппаратуры;
- вероятность безотказной работы (в течении заданного времени и в заданном режиме);
- частота отказов.
Надежность прибора или системы можно прогнозировать рассчитав ее заранее на этапе проектирования этих систем. Методика расчета основана на знании показателей надежности отдельных компонентов с учетом структуры, принципа и условий эксплуатации системы.
Полученные оценки являются вероятностными, т.е. показатели надежности компонентов оцениваются статистически по результатам их испытаний или эксплуатации.
СВ – величина, которая в результате опыта может принимать то или иное значение, причем заранее не известно какое именно. СВ м.б. дискретной и непрерывной.
Закон распределения СВ – соотношение, устанавливающее связь м/ значениями СВ и их вероятностями. Для характеристики СВ используется вероятность того, что СВ X меньше текущей переменной x.
Функция распределения (ФР) СВ (интегральный закон распределения)
F(x) = p (X < x)
Плотность распределения (ПР) непрерывной СВ (дифференциальный закон распределения) это производная от ФР
f(x)
= dF(x) / dx.
Свойства ПР:
В теории надежности за СВ обычно принимают время работы системы (это время до возникновения отказа). В этом случае ФР:
F(t) = P (t < tзад) = Q(t).
ПР: f(t) = dQ(t) / dt.
Вероятность безотказной работы за время t:
P(t) = 1 – Q(t).
Интенсивность отказа (условная плотность вероятности отказов) – это отношение ПР f(x) к вероятности безотказной работы P(t):
l(t) = f(t) / P(t).
В теории надежности наибольшее распространение получили законы распределения СВ f(t):
Для дискретной СВ – биноминальный, Пуассона.
Для непрерывной СВ – экспоненциальный, нормальный, гамма, Вейбулла, хи квадрат, логарифмический.
Случайное событие это событие, которое в результате опыта может произойти или не произойти. Для нас случайное событие это отказы, восстановления, заявки на обслуживание…образуют случайные потоки и случайные процессы. Поток событий это последовательность событий происходящих одно за другим в какие-то промежутки времени, например отказы восстанавливаемого производства образуют поток отказов. Под их действием, потов отказов и восстановлений, система может находится в различных состояниях: полного отказа, частичного отказа и работоспособном. Переход системы из одного состояния в другое представляет собой случайный процесс.
Биноминальный закон распределения числа n – появления события А в m – независимых опытах (испытаниях). Если вероятность появления события А в одном испытании есть р, тогда вероятность не появления события q = 1 – p.
Если независимое число испытаний = m, тогда вероятность появления n событий будет равна: - уравнение Бернулли.
- число сочетаний из m по n. .
Свойства:
При
увеличении числа испытаний биноминальное
распределение приближается к нормальному
со средним значением n/m и дисперсией
p(1-p)/m.
Закон Пуассона.
вероятность возникновения случайного события n раз за время t. l - интенсивность случайного события.
Свойства:
Распределение Пуассона получается из биноминального, если число испытаний m неограниченно возрастает, а МО числа событий остается постоянным.
Закон
Пуассона используется в том случае
когда необходимо определить вероятность
того что за данное время произойдет
1,2,3…отказов.
Экспоненциальный закон.
где P(x) это вероятность того что СВ X имеет значение большее x.
В частном случае, когда за СВ принимается время работы системы t вероятность т ого что система на протяжении времени t будет находится в работоспособном состоянии будем равно: .
где l - интенсивность отказов системы. l – const.
Это выражение можно получить из закона Пуассона, если число отказов n = 0.
Вероятность отказа за время t м.б. записана
Q(t)
= 1 – P(t) = 1 -
Плотность вероятности отказов
F(t)
= dQ / dt = l
Среднее время работы до возникновения отказа
Дисперсия – это время работы до возникновения отказа
D(t)
=
Среднеквадратичное отклонение
Равенство
и Т1
является характерным признаком экспоненциального
распределения.
g распределение.
Если отказ устройства возникает тогда когда произойдет не менее k отказов его элементов, а отказы элементов подчинены экспоненциальному закону с параметром l0. Плотность вероятности отказа устройства:
где l0 исходная интенсивность отказов (ИО) элементов устройства, отказ которого вызывается отказом его элементов. Этому распределению подчиняется время работы резервных устройств и систем.
Вероятность k и более отказов, т.е. вероятность отказа устройства:
Плотность вероятности отказа системы за время t:
Среднее время работы системы до отказа:
ИО устройства:
Вероятность безотказного состояния системы:
При k = 1 g распределение совпадает с экспоненциальным.
Распределение Вейбула.
Плотность вероятности:
Вероятность отсутствия отказа за время t:
ИО:
a и l0 - параметры распределения, при a = 1 функция Вейбула совпадает c экспоненциальным распределением. При a < 1 ИО будет монотонно убывающей функцией, если a > 1 – монотонно возрастающей.
Распределение
Вейбула применяется для
Нормальное распределение (НР).
СВ X возникает тогда когда x зависит от большого числа однородных по своему влиянию случайных факторов, причем влияние каждого из факторов по сравнению с влиянием совокупности остальных незначительно.
Плотность вероятности отказа НР:
Вероятность отказа за время t:
Для удобства определения F(t) составлены таблицы. Значение функции распределения определяется формулой: F(t) = 0.5 + Ф(u) = Q(t)
Вероятность отсутствия отказа за время t:
P(t) = 1 – Q(t) = 1 – (0.5 + Ф(u)) = 0.5 - Ф(u)
ИО монотонно возрастает и постепенно начинает приближаться к асимптоте:
y
= (t – T)/
c2 – распределение.
Если CB t распределена по НЗ с Т = 0 и = 1, то параметр X = будет являться СВ с плотностью распределения:
где k- число степеней свободы; Г(k/2) – это g функция.
С увеличением k c2 распределение приближается в НР.
g функция от k/2 это
НР
находит широкое применение в
теории надежности. Например установлено,
что описание удвоенного значения наработки
изделия, отнесенное к среднему времени
безотказной работы имеет c2
распределение, если время до отказа -
СВ с экспоненциальным распределением.
характеризуют ее ожидаемую работоспособность и подготовленность к эксплуатации. Эти показатели являются комплексными, учитывающие в том числе требовательное обслуживание со стороны пользователя. В их число входят готовность к решению задачи VA, коэффициент использования аппаратуры VN и продолжительность состояния готовности.