Автор работы: Пользователь скрыл имя, 10 Июля 2009 в 19:00, Не определен
Экспертные системы, их особенности. Применение экспертных систем.
Пример:
• проектирование конфигураций ЭВМ VAX — 11/780 в системе XCON (или R1), проектирование БИС — CADHELP;
• синтез электрических цепей — SYN и др.
5) Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров "подгоняются" под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
Пример:
• предсказание погоды — система WILLARD;
• оценки будущего урожая — PLANT;
• прогнозы в экономике — ECON и др.
6) Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
Пример:
• планирование поведения робота — STRIPS;
• планирование промышленных заказов — ISIS;
• планирование эксперимента — MOLGFN и др.
Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом "ученике" и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.
Пример:
• обучение языку программирования Лисп в системе "Учитель Лиспа";
• система PROUST — обучение языку Паскаль и др.
В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа — это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.
2. Классификация по связи с реальным временем.
1) Статические ЭС. Разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.
Пример: Диагностика неисправностей в автомобиле.
2) Квазидинамические ЭС. Интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.
Пример: Микробиологические ЭС, в которых снимаются лабораторные измерения с технологического процесса один раз в 4 - 5 ч (производство лизина, например) и анализируется динамика полученных показателей по отношению к предыдущему измерению.
3) Динамические ЭС. Работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных.
Пример: Управление гибкими производственными комплексами, мониторинг в реанимационных палатах и т.д. Пример инструментария для разработки динамических систем — G2.
3. Классификация по типу ЭВМ
На сегодняшний день существуют:
• ЭС для уникальных стратегически важных задач на суперЭВМ (Эльбрус, CRAY, CONVEX и др.);
• ЭС на ЭВМ средней производительности (типа ЕС ЭВМ, mainframe);
• ЭС на символьных процессорах и рабочих станциях (SUN, APOLLO);
• ЭС на мини- и супермини-ЭВМ (VAX, micro-VAX и др.);
• ЭС на персональных компьютерах (IBM PC, MAC II и подобные).
4. Классификация по степени интеграции с другими программами.
1) Автономные ЭС. Работают непосредственно в режиме консультаций с пользователем для специфически "экспертных" задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчеты, моделирование и т.д.).
2) Гибридные ЭС. Представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний.
Несмотря
на внешнюю привлекательность
2.2. Области применения экспертных систем.
Так же можно классифицировать ЭС по области их применения: медицинская диагностика, контроль и управление, диагностика неисправностей в механических и электрических устройствах, обучение.
а) Медицинская диагностика.
Диагностические системы
б) Прогнозирование.
Прогнозирующие системы
в) Планирование.
Планирующие системы
г) Интерпретация.
Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего типа, объединяет знания девяти экспертов. Используя сочетания девяти методов экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион долларов, причем наличие этих залежей не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и типы судов в тихом океане по данным акустических систем слежения.
д) Контроль и управление.
Системы, основанные на знаниях, могут применяться в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.
е) Диагностика неисправностей в механических и электрических устройствах.
В этой сфере системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном обеспечении компьютеров.
ж) Обучение.
Системы, основанные на знаниях, могут входить составной частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта (например, студента) и анализирует его поведение. База знаний изменяется в соответствии с поведением объекта. Примером этого обучения может служить компьютерная игра, сложность которой увеличивается по мере возрастания степени квалификации играющего. Одной из наиболее интересных обучающих ЭС является разработанная Д. Ленатом система EURISCO, которая использует простые эвристики. Эта система была опробована в игре Т. Тревевеллера, имитирующая боевые действия. Суть игры состоит в том, чтобы определить состав флотилии, способной нанести поражение в условиях неизменяемого множества правил. Система EURISCO включила в состав флотилии небольшие, способные провести быструю атаку корабли и одно очень маленькое скоростное судно и постоянно выигрывала в течение трех лет, несмотря на то, что в стремлении воспрепятствовать этому правила игры меняли каждый год.