Автор работы: Пользователь скрыл имя, 10 Июля 2009 в 19:00, Не определен
Экспертные системы, их особенности. Применение экспертных систем.
2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульмонологии путем замены базы знаний, используемой с тем же самым механизмом вывода.
3. Наиболее подходящая область применения - решение задач дедуктивным методом. Например, правила или эвристики выражаются в виде пар посылок и заключений типа “если-то”.
4. Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.
5. Выходные результаты являются
качественными (а не
6. Системы, основанные на
Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.
В экспертных системах первого поколения знания представлены следующим образом:
1)
знаниями системы являются
2)
методы представления знаний
позволяли описывать лишь
3) модели представления знаний ориентированы на простые области.
Представление знаний в
1) используются не поверхностные знания, а более глубинные. Возможно дополнение предметной области.
2)
ЭС может решать задачи
1.4. Критерий использования ЭС для решения задач.
Существует ряд прикладных
1. Данные и знания надежны и не меняются со временем.
2.
Пространство возможных
3.
В процессе решения задачи
должны использоваться
4. Должен быть, по крайней мере один эксперт, который способен явно сформулировать свои знания и объяснить свои методы применения этих знаний для решения задач.
В таблице один приведены
Таблица.
Критерий применимости ЭС.
применимы | неприменимы |
Не могут быть построены строгие алгоритмы или процедуры, но существуют эвристические методы решения. | Имеются эффективные алгоритмические методы. |
Есть эксперты, которые способны решить задачу. | Отсутствуют эксперты или их число недостаточно. |
По своему характеру задачи относятся к области диагностики, интерпретации или прогнозирования. | Задачи носят вычислительный характер. |
Доступные данные “зашумлены”. | Известны точные факты и строгие процедуры. |
Задачи решаются методом формальных рассуждений. | Задачи решаются процедурными методами, с помощью аналогии или интуитивно. |
Знания статичны (неизменны). | Знания динамичны (меняются со временем). |
В целом ЭС не рекомендуется применять для решения следующих типов задач:
- математических, решаемых обычным путем формальных преобразований и процедурного анализа;
-
задач распознавания,
-
задач, знания о методах
1.5. Ограничения в применение экспертных систем.
Даже лучшие из существующих
ЭС, которые эффективно
1.
Большинство ЭС не вполне
2.
Вопросно-ответный режим,
3. Навыки системы не возрастают после сеанса экспертизы.
4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.
5.
ЭС не способны обучаться, не
обладают здравым смыслом.
6.
ЭС неприменимы в больших
7. В тех областях, где отсутствуют эксперты (например, в астрологии), применение ЭС оказывается невозможным.
8. Имеет смысл привлекать ЭС только для решения когнитивных задач. Теннис, езда на велосипеде не могут являться предметной областью для ЭС, однако такие системы можно использовать при формировании футбольных команд.
9.
Человек-эксперт при решении
Системы, основанные на
1.6. Преимущества ЭС перед человеком - экспертом.
Системы, основанные на
1. У них нет предубеждений.
2.
Они не делают поспешных
3. Эти системы работают, систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.
4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.
6.
Эти системы не заменяют
ГЛАВА 2. КЛАССИФИКАЦИЯ ЭКСПЕРТНЫХ СИСТЕМ.
2.1. Схема классификации.
Класс "экспертные системы" сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Полезными могут оказаться следующие классификации:
1. Классификация по решаемой задаче.
1) Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
Пример:
•
обнаружение и идентификация
различных типов океанских
• определение основных свойств личности по результатам психодиагностического тестирования в системах АВТАНТЕСТ и МИКРОЛЮШЕР и др.
2) Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы.
Пример:
• диагностика и терапия сужения коронарных сосудов — ANGY;
• диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ — система CRIB и др.
3) Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста.
Пример:
• контроль за работой электростанций СПРИНТ, помощь диспетчерам атомного реактора—REACTOR;
• контроль аварийных датчиков на химическом заводе — FALCON и др.
4) Проектирование. Проектирование состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов — чертеж, пояснительная записка и т.д. Основные проблемы здесь — получение четкого структурного описания знаний об объекте и проблема "следа". Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.