Автор работы: Пользователь скрыл имя, 03 Апреля 2010 в 19:23, Не определен
Углеродные нанотрубки
Классификация нанотрубок
Получение углеродных нанотрубок
Структурные свойства
Возможные применения нанотрубок
Заключение
Использованная литература
Рис.3. Gd@C60@SWNT, т.е. "Gd
внутри C60 внутри однослойной нанотрубки
(Single Wall NanoTube)"
В нанотрубки можно
не только "загонять" атомы и молекулы
поодиночке, но и буквально "вливать"
вещество. Как показали эксперименты,
открытая нанотрубка обладает капиллярными
свойствами, то есть она как бы втягивает
в себя вещество. Таким образом, нанотрубки
можно использовать как микроскопические
контейнеры для перевозки химически или
биологически активных веществ: белков,
ядовитых газов, компонентов топлива и
даже расплавленных металлов. Попав внутрь
нанотрубки, атомы или молекулы уже не
могут выйти наружу: концы нанотрубок
надежно "запаяны", а углеродное ароматическое
кольцо слишком узкое для большинства
атомов. В таком виде активные атомы или
молекулы можно безопасно транспортировать.
Попав в место назначения, нанотрубки
раскрываются с одного конца (а операции
"запаивания" и "распаивания"
концов нанотрубок уже вполне под силу
современной технологии) и выпускают свое
содержимое в строго определенных дозах.
Это - не фантастика, эксперименты такого
рода уже сейчас проводятся во многих
лабораториях мира. И не исключено, что
через 10-20 лет на базе этой технологии
будет проводиться лечение заболеваний:
скажем, больному вводят в кровь заранее
приготовленные нанотрубки с очень активными
ферментами, эти нанотрубки собираются
в определенном месте организма некими
микроскопическими механизмами и "вскрываются"
в определенный момент времени. Современная
технология уже практически готова к реализации
такой схемы.
Углеродные нанотрубки:
свойства и применение
Ключевые слова:
углеродные нанотрубки
Автор(ы): Иванов И.П.
(Научная лаборатория школьников), Лапин
Дмитрий Владимирович
Опубликовал(а): Лапин
Дмитрий Владимирович
20 апреля 2008
Материал: Иванов И.П.
(Научная лаборатория
Многие из перспективных
направлений в
Углеродные каркасные
структуры - это большие (а иногда
и гигантские!) молекулы, состоящие
исключительно из атомов углерода.
Можно даже говорить, что углеродные
каркасные структуры - это новая
аллотропная формауглерода (в дополнение
к давно известным: алмазу и графиту). Главная
особенность этих молекул - это их каркасная
форма: они выглядят как замкнутые, пустые
внутри "оболочки". Самая знаменитая
из углеродных каркасных структур - это
фуллерен C60, абсолютно неожиданное открытие
которого в 1985 году вызвало целый бум исследований
в этой области (Нобелевская премия по
химии за 1996 год была присуждена именно
первооткрывателям фуллеренов Роберту
Керлу, Гарольду Крото и Ричарду Смалли).
В конце 80-х, начале 90-х годов, после того
как была разработана методика получения
фуллеренов в макроскопических количествах,
было обнаружено множество других, как
более легких, так и более тяжелых фуллеренов:
начиная от C20 (минимально возможного из
фуллеренов) и до C70, C82, C96, и выше.
Однако разнообразие
углеродных каркасных структур на этом
не заканчивается. В 1991 году, опять-таки
совершенно неожиданно, были обнаружены
длинные, цилиндрические углеродные образования,
получившие названия нанотрубок. Визуально
структуру таких нанотрубок можно представить
себе так: берем графитовую плоскость,
вырезаем из нее полоску и "склеиваем"
ее в цилиндр (предостережение: такое сворачивание
графитовой плоскости - это лишь способ
представить себе структуру нанотрубки;
реально нанотрубки растут совсем по-другому).
Казалось бы, что проще - берешь графитовую
плоскость и сворачиваешь в цилиндр! -
однако до экспериментального открытия
нанотрубок никто из теоретиков их не
предсказывал! Так что ученым оставалось
только изучать их - и удивляться!
А удивительного было
много. Во-первых, разнообразие форм: нанотрубки
могли быть большие и маленькие, однослойные
и многослойные, прямые и спиральные. Во-вторых,
несмотря на кажущуюся хрупкость и даже
ажурность, нанотрубки оказались на редкость
прочным материалом, как на растяжение,
так и на изгиб. Более того, под действием
механических напряжений, превышающих
критические, нанотрубки также ведут себя
экстравагантно: они не "рвутся" и
не "ломаются", а просто-напросто
перестраиваются! Далее, нанотрубки демонстрируют
целый спектр самых неожиданных электрических,
магнитных, оптических свойств. Например,
в зависимости от конкретной схемы сворачивания
графитовой плоскости, нанотрубки могут
быть и проводниками, и полупроводниками!
Может ли какой-либо иной материал с таким
простым химическим составом похвастаться
хотя бы частью тех свойств, которыми обладают
нанотрубки?!
Наконец, поражает разнообразие
применений, которые уже придуманы
для нанотрубок. Первое, что напрашивается
само собой, это применение нанотрубок
в качестве очень прочных микроскопических
стержней и нитей. Как показывают результаты
экспериментов и численного моделирования,
модуль Юнга однослойной нанотрубки достигает
величин порядка 1-5 ТПа, что на порядок
больше, чем у стали! Правда, в настоящее
время максимальная длина нанотрубок
составляет десятки и сотни микронов -
что, конечно, очень велико по атомным
масштабам, но слишком мало для повседневного
использования. Однако длина нанотрубок,
получаемых в лаборатории, постепенно
увеличивается - сейчас ученые уже вплотную
подошли к миллиметровому рубежу: см. работу
[Z. Pan et al, 1998], где описан синтез многослойной
нанотрубки длиной в 2 мм. Поэтому есть
все основания надеяться, что в скором
будущем ученые научатся выращивать нанотрубки
длиной в сантиметры и даже метры! Безусловно,
это сильно повлияет на будущие технологии:
ведь "трос" толщиной с человеческий
волос, способный удерживать груз в сотни
килограмм, найдет себе бесчисленное множество
применений.
Другой пример, когда
нанотрубка является частью физического
прибора - это "насаживание" ее на
острие сканирующего туннельного или
атомного силового микроскопа. Обычно
такое острие представляет собой остро
заточенную вольфрамовую иглу, но по атомным
меркам такая заточка все равно достаточно
грубая. Нанотрубка же представляет собой
идеальную иглу диаметром порядка нескольких
атомов. Прикладывая определенное напряжение,
можно подхватывать атомы и целые молекулы,
находящиеся на подложке непосредственно
под иглой, и переносить их с места на место.
Необычные электрические
свойства нанотрубок сделают их одним
из основных материалов наноэлектроники.
Уже сейчас созданы опытные образцы полевых
транзисторов на основе одной нанотрубки:
прикладывая запирающее напряжение в
несколько вольт, ученые научились изменять
проводимость однослойных нанотрубок
на 5 порядков!
Еще одно применение
в наноэлектронике - создание полупроводниковых
гетероструктур, т.е. структур типа металл/полупроводник
или стык двух разных полупроводников.
Теперь для изготовления такой гетероструктуры
не надо будет выращивать отдельно два
материала и затем "сваривать" их
друг с другом. Все, что требуется, это
в процессе роста нанотрубки создать в
ней структурный дефект (а именно, заменить
один из углеродных шестиугольников пятиугольником).
Тогда одна часть нанотрубки будет металлической,
а другая - полупроводником!
Разработано уже
и несколько применений нанотрубок
в компьютерной индустрии. Например, созданы
и опробованы прототипы тонких плоских
дисплеев, работающих на матрице из нанотрубок.
Под действием напряжения, прикладываемого
к одному из концов нанотрубки, с другого
конца начинают испускаться электроны,
которые попадают на фосфоресцирующий
экран и вызывают свечение пикселя. Получающееся
при этом зерно изображения будет фантастически
малым: порядка микрона!
С помощью того же
атомного микроскопа можно производить
запись и считывание информации с
матрицы, состоящей из атомов титана,
лежащих на -Al2O3 подложке. Эта идея
уже также реализована
Пустоты внутри нанотрубок
(и углеродных каркасных структур вообще)
также привлекали внимание ученых. В самом
деле, а что будет, если внутрь фуллерена
поместить атом какого-нибудь вещества?
Эксперименты показали, что интеркаляция
(т.е. внедрение) атомов различных металлов
меняет электрические свойства фуллеренов
и может даже превратить изолятор в сверхпроводник!
А можно ли таким же образом изменить свойства
нанотрубок? Оказывается, да. В работе
[K.Hirahara et al, 2000] ученые смогли поместить
внутрь нанотрубки целую цепочку из фуллеренов
с уже внедренными в них атомами гадолиния!
Электрические свойства такой необычной
структуры сильно отличались как от свойств
простой, полой нанотрубки, так и от свойств
нанотрубки с пустыми фуллеренами внутри.
Как, оказывается, много значит валентный
электрон, отдаваемый атомом металла во
всеобщее распоряжение! Кстати, интересно
отметить, что для таких соединений разработаны
специальные химические обозначения.
Описанная выше структура записывается
как Gd@C60@SWNT, что означает "Gd внутри C60
внутри однослойной нанотрубки (Single Wall
NanoTube)".
В нанотрубки можно
не только "загонять" атомы и молекулы
поодиночке, но и буквально "вливать"
вещество. Как показали эксперименты,
открытая нанотрубка обладает капиллярными
свойствами, то есть она как бы втягивает
в себя вещество. Таким образом, нанотрубки
можно использовать как микроскопические
контейнеры для перевозки химически или
биологически активных веществ: белков,
ядовитых газов, компонентов топлива и
даже расплавленных металлов. Попав внутрь
нанотрубки, атомы или молекулы уже не
могут выйти наружу: концы нанотрубок
надежно "запаяны", а углеродное ароматическое
кольцо слишком узкое для большинства
атомов. В таком виде активные атомы или
молекулы можно безопасно транспортировать.
Попав в место назначения, нанотрубки
раскрываются с одного конца (а операции
"запаивания" и "распаивания"
концов нанотрубок уже вполне под силу
современной технологии) и выпускают свое
содержимое в строго определенных дозах.
Это - не фантастика, эксперименты такого
рода уже сейчас проводятся во многих
лабораториях мира. И не исключено, что
через 10-20 лет на базе этой технологии
будет проводиться лечение заболеваний:
скажем, больному вводят в кровь заранее
приготовленные нанотрубки с очень активными
ферментами, эти нанотрубки собираются
в определенном месте организма некими
микроскопическими механизмами и "вскрываются"
в определенный момент времени. Современная
технология уже практически готова к реализации...
ПОЛУЧЕНИЕ СЗМ ИЗОБРАЖЕНИЯ
УГЛЕРОДНЫХ НАНОТРУБОК. Оценка РАДИУСА
ЗАКРУГЛЕНИЯ ОСТРИЯ ЗОНДА
Лабораторная работа
была разработана в Центре Нанотехнологии
в Электронике Московского Института
Электронной Техники (Технический Университет)
1. Цели работы ..............................
2. Информация для
преподавателя ................
3. Содержание работы
..............................
4. Методические указания
..............................
5. Техника безопасности
..............................
6. Задание ......................
7. Контрольные вопросы
..............................
8. Литература ..............................
1. Цели
работы
1. Получение
практических навыков работы
с отдельными молекулами на
примере углеродных нанотрубок.
Знакомство с их свойствами и изучение
основных характеристик.
2. Изучение
особенностей сканирования
3. Оценка
радиуса закругления по
2. Информация для
преподавателя
Наблюдение углеродных
нанотрубок является одним из высших достижений
для СЗМ NanoEducator и требует проявления высокого
искусства от работающих на микроскопе
операторов.
Работа состоит
из двух частей, выполняемых на одном
занятии (4 часа). Первая часть работы
заключается в получении
Вторая часть работы
заключается в оценке радиуса
острия зонда по изображению нанотрубок.
Принципиальным для
получения изображения является
радиус острия зонда – он должен
быть не более 150 нм. В связи с этим
до начала работы необходимо подобрать
зонды с соответствующим
Образцы для исследования:
тестовые образцы, содержащие углеродные
нанотрубки. Отличительной особенностью
тестового образца, содержащего углеродные
нанотрубки, является наличие слабо закрепленных
объектов (нанотрубок) на планарной поверхности
(полированной кремниевой подложке).
Тестовые образцы
с углеродными нанотрубками рассчитаны
на работу и хранение в чистых условиях
не более 1 года. Тем не менее, желательно,
по мере необходимости проводить отжиг
структуры при температуре 500 ºС в течении
нескольких минут.