Автор работы: Пользователь скрыл имя, 26 Сентября 2011 в 18:24, курсовая работа
Вольтамперометрическими называют методы анализа, основанные на регистрации и изучении зависимости тока, протекающего через электролитическую ячейку, от внешнего наложенного напряжения. Графическое изображение этой зависимости называют вольтамперограммой. Анализ вольтамперограммы даёт информацию о качественном и количественном составах анализируемого вещества.
1.Введение стр.2
2.Электролиз с ртутным капающим катодом стр.2
3.Полярографические волна и фон стр.2
4.Полярографические максимум стр.4
5.Влияние растворённого кислорода стр.7
6.Качественный полярографический анализ стр.8
7.Количественный полярографический анализ стр.9
8.Одласть применения ртутного капающего катода, его достоинства и недостатки стр.10
9.Твёрдые микроэлектроды, их область применения, достоинства и недостатки стр.11
10.Дифференцильная полярография стр.12
11.Осциллографическая полярография стр.14
12.Переменно – токовая полярография стр.16
13.Амальгамная полярография стр.19
14.Инверсионная вольтамперометрия стр.20
15.Определение микроколичеств цинка, кадмия, свинца и меди в природных водах методом инверсионной вольтамперометрии стр.24
16.Задача стр.25
17.Список литературы стр.26
Так
как константа
где - концентрация вещества в анализируемом растворе; -концентрация стандартного раствора; - высота волны на полярограмме анализируемого раствора; - высота волны на полярограмме стандартного раствора.
Метод менее трудоёмок, чем метод градуировочного графика, но другие недостатки те же.
Метод добавок. После того как полярограмма анализируемого раствора записана, в ячейку добавляют известное количество определяемого вещества и записывают полярограмму раствора с добавкой. Измерив высоты волн на обеих полярограммах, рассчитывают концентрацию определяемого вещества.
Пусть
концентрация вещества в
то
Метод быстр и лишён недостатков, которые
имеются в методе градуировочного графика
при определении вещества в сложном по
составу растворе, так как влияние всех
присутствующих в растворе примесей учитывается.
Для того чтобы не вводить поправку на
разбавление раствора, стандартный раствор
должен быть достаточно концентрированным.
Область применения ртутного капающего электрода, его достоинства и недостатки.
Область поляризации ртутного электрода довольно широка: даже в кислых растворах выделение газообразного водорода в результате восстановления ионов водорода наблюдается при потенциалах от -1,2 до -1,5 В в зависимости от концентрации кислоты. В нейтральных же и щелочных растворах интервал доступных потенциалов расширяется до -2-2,2 В. Это позволяет изучать и использовать в анализе процессы восстановления многих органических и неорганических веществ. В области положительных потенциалов использование ртутного капающего электрода ограничено процессом окисления металлической ртути при потенциале 0 В в щелочной и при +0,4 В в сернокислой среде.
Капающий
ртутный электрод обладает
К
недостаткам капающего
Твёрдые микроэлектроды, их область применения, достоинства и недостатки.
Выбор материалов, пригодных для изготовления твёрдых микроэлектродов, достаточно широк, но чаще всего всё – таки используется платина. Платиновый электрод хорошо работает в пределах от 0,0 до +0,75 В относительно НВЭ, а при благоприятных условиях этот диапазон потенциалов можно расширить ещё на 250 мВ в каждую сторону. Однако использование платины осложнено влиянием её поверхностных оксидов; кроме того платина адсорбирует и абсорбирует водород. Платиновую проволоку можно впаять в пирексовое стекло, что облегчает изготовление электродов.
В качестве материала для приготовления электродов широко используется также золото. Рабочий диапазон потенциалов золотого электрода относительно НВЭ составляет приблизительно от -0,75 до +1,5 В (исключение составляют кислые растворы хлоридов, которые образуют хлоридные комплексы) с подобным же расширением диапазона при благоприятных условиях, как и для платинового электрода. Следовательно, золотой электрод более пригоден для изучения катодных процессов, чем платиновый. На работу золотого, как и на работу платинового электродов, могут влиять поверхностные оксиды, однако Au адсорбирует водород в значительно меньшей мере, чем Pt. К сожалению, металлическое золото нельзя впаять в стекло.
В
настоящее время всё более
широкое распространение
По
сравнению с РКЭ другие
Дифференциальная полярография.
Определение
смеси нескольких веществ,
Принципы
дифференциальной полярографии
основаны на следующих
и взять производную , получим при
Уравнение (1) показывает, что при потенциале, равном , производная силы тока по потенциалу пропорциональна предельному току. На кривой точка, отвечающая значению потенциала, равному , имеет перегиб, следовательно, кривая в этой точке имеет максимум (рис.7).
Рис.7.
Кривая
для разряда
одного иона
В дифференциальной полярографии потенциал, соответствующий максимальному значению , является потенциалом полуволны и на его основе определяют природу вещества. Высота максимума пропорциональна , а следовательно концентрации вещества.
В
тех случаях, когда в растворе
находятся два и более катиона,
Рис.8.
Дифференциальная полярограмма
для случая разряда
двух ионов
Фон 1М KCl
Если же снимать кривую для раствора, содержащего и , то получится одна полярографическая волна, отвечающая сумме обоих электродных процессов; таким образом, обычная полярография не даёт возможности в таких случаях провести раздельное определение ионов.
Для
получения кривых
Однако
эта методика довольно слжна,
так как необходимо иметь
В
настоящее время метод
Осциллографическая полярография.
В полярографии постоянного тока запись полярограммы проводится на большом числе капель при медленном линейном изменении поляризующего напряжения. Наличие осцилляций тока и относительно высокая длительность записи полярограммы в значительной степени ограничивают возможность классического метода.
В
конце 30 –х годов появились
первые исследования, в которых
было показано, что при соответствующем
увеличении скорости подъёма
поляризующего напряжения и
В
дальнейшем возникло несколько
разновидностей метода
Возможность одновременного наблюдения за изменениями катодной и анодной ветвей полярограммы делает этот метод особенно ценным при изучении кинетики электродных процессов и строения ёмкости двойного слоя.
Для
аналитических целей более
в котором - скорость изменения напряжения на ячейке. Уравнение осциллополярограммы было также получено другими методами Шевчиком, а позднее Мацудой и Гохштейном.
Форма
осциллографической