Смазочные материалы

Автор работы: Пользователь скрыл имя, 05 Апреля 2011 в 03:32, курсовая работа

Описание работы

Актуальность разрабатываемого проекта в применении наиболее перспективного избирательного растворителя - N-метилпирролидона в процессе селективной очистки с целью увеличения выхода рафината без ухудшения его качества.

Содержание работы

Введение ………………………………………………………………………………..4
Теоретические основы процесса………………………………………………..5
Характеристика сырья и продуктов…………………………...........................14
Выбор и описание технологической схемы установки………………………15
Технологический расчет материального баланса и основных
аппаратов установки………………………………………………………......17
Заключение………………………………………………………................................46
Список литературы…………………………………………………………………...47

Файлы: 1 файл

курсовой смазочные материалы.doc

— 746.50 Кб (Скачать файл)

     Желательная степень очистки нефтяного сырья  и выход рафината помимо оптимальных  расхода растворителя и температуры  очистки достигаются также применением наиболее совершенного метода экстракции. На современных промышленных установках селективную очистку осуществляют методом непрерывной противоточной экстракции. Преимущество его перед другими (однократным и многократным периодическим) заключается в простоте аппаратурного оформления, меньшем расходе растворителя при большем выходе рафината лучшего качества. При экстрагировании методом противотока очищаемый продукт по мере непрерывного движения навстречу растворителю все в большей степени освобождается от нежелательных компонентов, извлекаемых растворителем. Так как при этом КТР очищаемого сырья все время повышается, то для доизвлечения остающихся в рафинате нежелательных компонентов необходима более высокая температура экстракции. С этой целью создают разность между температурами растворителя и сырья (температурный градиент) 15-30 0С. Зона наибольшей температуры – место ввода растворителя, наименьшей – место выхода экстрактного раствора. Температура в зависимости от растворителя составляет от 45 до 150°С. 
 
 

       ХАРАКТЕРИСТИКА РАСТВОРИТЕЛЯ

     В связи с ужесточением требований к охране окружающей среды как  в России, так и за рубежом отмечается тенденция к замене высокотоксичного фенола менее токсичным и достаточно эффективным  N-метилпирролидоном.

     

       Характеристики N-метилпирролидона представлены в таблице 1.

Таблица 1 - Характеристика N-метилпирролидона

Наименование Значение Наименование Значение
Молекулярная  масса 99,13 Критический объем, м3/кмоль 0,316
Плотность при 25 0С, кг/м3 1028 Энтальпия испарения  при 20 0С, кДж/кг 550,0
Температура кипения, 0С 204,3 Низшая теплотворная способность, кДж/кг 28000
Температура застывания, 0С -23,6 Поверхностное натяжение при 25 0С, Н/м 0,041
Критическая температура, 0С 451,0 Дипольный момент 4,09
Критическое давление, атм. 4,78 Вязкость динамическая при 50 0С, мПа*с 1,01

     Важным  показателем эффективности растворителя является его взаимодействие с водой. N-метилпирролидон смешивается с водой в любом соотношении и поэтому, в отличии от фенола и фурфурола, не образует с ней азеотропной смеси. Следовательно, при очистке N-метилпирролидона отпадает необходимость в водном контуре, что значительно облегчает работу узла регенерации растворителя из экстрактного раствора [2].

     N-метилпирролидон имеет более высокую температуру кипения, чем фенол и фурфурол, и казалось бы его труднее отогнать из экстрактного и особенно рафинатного растворов. Однако за счет меньшей теплоемкости N-метил-пирролидона КПД тарелок ректификационной колонны выше, чем при отгоне фенола, что дает возможность отогнать растворитель без серьезного уноса легкого продукта с растворителем и, кроме того, для снижения температур кипения растворителя отпарные колонны работают под вакуумом.

     Плотность N-метилпирролидона несколько меньше плотности фенола и фурфурола, однако разность плотностей N-метилпирролидона и масляных фракций достаточна для быстрого их разделения. Меньшие вязкость и эмульгируемость смеси масло - N-метилпирролидон обеспечивают более быстрое расслоение фаз по сравнению с фенольной очисткой (более чем в 2 раза), что дает возможность увеличить производительность установки приблизительно на 25% [2].

     К недостаткам N-метилпирролидона следует отнести его высокую стоимость и дефицитность, а также умеренную термическую стабильность. При 200 0С начинается окисление N- метилпирролидона, а при температурах выше 300 0С он разлагается в отсутствии кислорода с образованием смолистых продуктов. При контакте с воздухом в N-метилпирролидоне происходит растворение кислорода с образованием гидропероксидов, которые при температуре выше 160 0С распадаются с образованием N-метилсукцинимидных соединений, имеющих щелочную реакцию. Реакцию разложения стимулирует присутствие воды. Амины при растворении в N-метилпирролидоне придают ему щелочную реакцию и могут в некоторой степени нейтрализовать кислые продукты, образующиеся при его высокотемпературном разложении. С повышением температуры кислотное число N-метилпирролидона увеличивается вследствие разрушения аминов. В присутствии воды возможно протекание реакций гидролиза с образованием муравьиной, метилгаммааминомасляной и гаммаоксимасляной кислот. Возможно также образование лактамов (внутренние амиды) и лактонов, наиболее интенсивно реакции гидролиза протекают при температурах выше 220 0С. Во избежание разрушения аппаратуры вследствие коррозии при использовании  N-метилпирролидона следует использовать для ее изготовления аустенитные хромоникелевые стали, ферритные хромистые стали и технический алюминий. Удовлетворительной коррозионной стойкостью обладают медь, латунь, а серый чугун и резины, напротив, очень нестойки при соприкосновении с продуктами разложения N-метилпирролидона. Легированная сталь коррозионно устойчива при всех температурах процесса с применением N-метилпирролидона. С целью предотвращения коррозии аппаратуры в процессе селективной очистки с применением N-метилпирролидона предусматривают деаэрацию и обезвоживание его растворов . 
 
 
 
 
 
 
 
 
 
 
 

2. ХАРАКТЕРИСТИКА  СЫРЬЯ  И  ПРОДУКТОВ

Физико-химические характеристики усть-балыкской нефти

Р
4
(50)

сСт

Т застывания

Т вспышки

Содержание

Парафина, %

Т плавления

Парафина, С

0,8651 2,95 10 -21 4,87 50
 

Потенциальное содержание  базовых дистиллятов  и остаточных масел

Т отбо-

ра

Выход

% на

нефть

Характеристика

базовых масел

Содержание  базового масла
Р

4

50

сСт

100

сСт

50 ___

100

ИВ ВВК 
Т

застыв.

На дист. фрак.

или остаток

На

Нефть

350-450 14,2 0,8850 11,10 3,40 - 70 - -29 58,0 8,2
400-450 10,4 0,9095 40,95 7,59 - 68 - -21 59,8 6,2
Остаток

450

13,6 0.8945 107,3 15,28 7,04 79 0,836 -18 26,7 3,6
 
 
 
 

3. ВЫБОР И ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ

УСТАНОВКИ

    Принципиальная  технологическая схема установки  экстракционной очистки нефтяного  сырья выбирается в зависимости от свойств перерабатываемого сырья, в частности от фракционного состава, схемы НПЗ, назначения процесса и получаемой продукции, выбранного растворителя и аппаратурного оформления процесса. При выборе схемы установки следует руководствоваться следующими основными положениями:

  • гибкость технологической схемы, обеспечивающая переработку сырья различного качества с получением продукции требуемого качества;
  • высокий выход целевых продуктов;
  • простота и компактность оборудования;
  • максимальная утилизация тепла отходящих потоков, энергосбережение;
  • минимальный расход охлаждающей среды;
  • предотвращение загрязнения окружающей среды. 

     Сырье (I) направляется в абсорбер К-1, куда подается смесь водяного пара и растворителя. Температура в абсорбере поддерживается на уровне 115°С во избежание конденсации воды. В абсорбере происходит удаление воды и растворенного воздуха, присутствующих в исходном сырье, а также абсорбция растворителя сырьевым потоком. Пары воды уходят с верха абсорбционной колонны.

     Далее сырье, насыщенное N-метилпирролидоном, направляют в среднюю часть экстрактора К-2, в верхнюю часть экстрактора подается регенерированный N-метилпирролидон.

     Рафинатный  раствор, выходящий с верха экстрактора, собирается в емкости Е-3 и насосом  Н-5 через регенеративный теплообменник Т-2, в которых происходит нагрев рафинатного раствора за счет тепла паров N-метилпирролидона, выходящих из колонны К-3 и рафината, выходящего с низа колонны К-4, подается в печь П-1.

     Далее рафинатный раствор поступает в  ректификационную колонну К-3, где происходит испарение основного количества растворителя.

     С низа колонны К-3 рафинатный раствор  перетекает в колонну К-4, где происходит удаление остатков растворителя за счет ввода водяного пара IV.

     С верха колонны К-4 через барометрический конденсатор БК смесь водяных паров и паров растворителя направляется в емкость Е-4, а рафинат V с низа колонны К-4 после охлаждения поступает в парк.

     Экстрактный раствор с низа экстракционной колонны  К-2 насосом Н-8 подается в регенеративный теплообменник Т-3 для нагрева и затем подается в осушительную колонну К-7, где в мягких условиях удаляются остатки воды из растворителя. Тепло в колонну подводится с помощью рибойлера Р-1.

     Далее с низа колонны К-7 насосом Н-11 раствор подается двумя потоками в печь П-2, а затем в колонну К-6, где при высоких температурах отгоняется основная часть растворителя.

     Вода  с примесями N-метилпирролидона, выходящая с верха колонны К-7, частично охлаждается и конденсируется в аппарате воздушного охлаждения КХ-1, собирается в емкости Е-5 и направляется в колонну К-7 для орошения. Балансовое количество этой воды в виде паров поступает в абсорбер К-1.

     Для окончательного удаления растворителя из экстракта экстрактный раствор  с низа колонны К-6 поступает в  отпарную колонну К-5. С верха колонны К-5 обводненный растворитель направляется через барометрический конденсатор БК в емкость Е-4, а оттуда в абсорбер К-1, а экстракт после охлаждения откачивается в парк. 
 
 

4.Технологический расчет материального баланса и основных

аппаратов установки 

      Материальный баланс установки селективной очистки

Согласно  заданию производительность установки  составляет 400000 т/год. Исходя из того, что  в году 333 рабочих суток производительность установки составляет 50050,05 кг/ч.

    Таблица 2  - Материальный баланс установки

Наименование  продукта % масс от  сырья G, кг/ч G, т/сутки G, т/год
Взято:  
1.Сырье 100,0 50050,05 1201,20 400000
2.Раствор пероксида водорода 3,0 1501,50 36,04 12000
3.Пероксид водорода 1,0 500,50 12,01 4000
4.Вода 2,0 1001,00 24,02 8000
Итого: 103,0 53053,05 1273,27 424000
Получено:  
1. Рафинат 72,6 37394,68 897,47 298858,25
2. Экстракт 27,9 14360,38 344,65 114768,16
3. Вода 2,5 1298,00 31,15 10373,59
Итого: 103,0 53053,05 1273,27 424000,00

Информация о работе Смазочные материалы