Автор работы: Пользователь скрыл имя, 21 Июня 2015 в 12:10, реферат
Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.
Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.
Введение
3
1) История развития учения о гармонах.
4
2) Номенклатура и классификация гормонов.
5
3) Характеристика стероидных гормонов.
7
4) Механизм действия стероидных гормонов.
13
5) Характеристика пептидных гормонов.
14
6)Механизм действия пептидных гормонов.
26
7) Характеристика групп прочих гормонов.
28
8) Применение гормонов в медицине, сельском хозяйстве и спорте.
33
Заключение
37
Список используемой литературы
Рецепторы к кальцитонину выявляются на остеокластах, моноцитах, в почках, мозге, гипофизе, плаценте, половых железах, лёгких и печени. Роль этого гормона в организме продолжает изучаться. Кальцитонин обладает гипокальциемическим эффектом за счёт ингибирования активности остеокластов и снижения скорости костной резорбции, снижения реабсорбции кальция в почках и уменьшения абсорбции кальция в кишечнике. Он понижает почечную реабсорбцию фосфатов, вызывая умеренное снижение фосфора крови. Этот гормон функционально является антагонистом паратиреоидного гормона, но его роль в регуляции кальций-фосфорного обмена в организме человека, по сравнению с паратгормоном, невелика.
Ни снижение уровня кальцитонина в сыворотке после тиреоидэктомии, ни значительный его избыток при медуллярной карциноме щитовидной железы не вызывают значительных изменений уровня сывороточного кальция или существенного снижения или увеличения костной массы. Уровень секреции кальцитонина модулируется повышением и падением кальция крови (повышение содержания кальция крови вызывает повышение уровня кальцитонина). Метаболизируется он преимущественно в почках, при почечной недостаточности может наблюдаться повышение уровня кальцитонина.
Вазопресси́н
Вазопресси́н, или антидиурети́ческий гормо́н (АДГ) — гормон гипоталамуса, который накапливается в задней доле гипофиза (в нейрогипофизе) и оттуда секретируется в кровь. Секреция увеличивается при повышении осмолярности плазмы крови и при уменьшении объёма внеклеточной жидкости. Вазопрессин увеличивает реабсорбцию воды почкой, таким образом повышая концентрацию мочи и уменьшая её объём. Имеет также ряд эффектов на кровеносные сосуды и головной мозг.
Главным стимулом для секреции вазопрессина является повышение осмолярности плазмы крови, обнаруживаемое осморецепторами в самих паравентрикулярном и супраоптическом ядрах гипоталамуса, в области передней стенки третьего желудочка, а также, по-видимому, печени и ряда других органов. Кроме того, секреция гормона повышается при уменьшении ОЦК, которое воспринимают волюморецепторы внутригрудных вен и предсердий. Последующая секреция AVP приводит к коррекции этих нарушений.
Вазопрессин химически весьма сходен с окситоцином, поэтому может связываться с рецепторами к окситоцину и через них оказывает утеротоническое и окситоцическое (стимулирующее тонус и сокращения матки) действие. Однако его аффинность к OT-рецепторам невелика, поэтому при физиологических концентрациях утеротонический и окситоцический эффекты у вазопрессина гораздо слабее, чем у окситоцина. Аналогично, окситоцин, связываясь с рецепторами к вазопрессину, оказывает некоторое, хотя и слабое, вазопрессиноподобное действие — антидиуретическое и сосудосуживающее.
Уровень вазопрессина в крови повышается при шоковых состояниях, травмах, кровопотерях, болевых синдромах, при психозах, при приёме некоторых лекарственных препаратов.
Окситоцин
Окситоцин — гормон гипоталамуса, который затем транспортируется в заднюю долю гипофиза, где накапливается (депонируется) и выделяется в кровь. Имеет олигопептидное строение.
В лактирующей груди окситоцин вызывает сокращение миоэпителиальных клеток, окружающих альвеолы и протоки молочной железы. Благодаря этому молоко, выработанное под воздействием гормона пролактина, выделяется из груди. При грудном кормлении окситоцин поступает в молочную железу, помогая молоку проходить в субареолярные протоки, откуда молоко выделяется из сосков. После поглощения ребёнком из молока окситоцин поступает в гипоталамус через спинные нервы. Воздействие на гипоталамус ребёнка побуждает нейроны гипоталамуса вырабатывать окситоцин и способствует пусковому импульсу в выработке окситоцина прерывистыми толчками. Эти толчки являются результатом пульсирующего выделения окситоцина из нейросекреторных окончаний нерва в нейрогипофизе.
Окситоцин при определенных обстоятельствах косвенно препятствует выделению адренокортикотропного гормона и кортизола, и в некоторых ситуациях может рассматриваться и антагонистом вазопрессина[8].
Окситоцин способен вернуть молодость старым мышцам. Системное введение окситоцина быстро улучшает регенерацию мышц путем повышения пролиферации стволовых клеток в результате активации сигнального пути МАРК / ERK в старых мышцах[9]. Учитывая то, что окситоцин является препаратом одобренным FDA, его введение пациентам может стать потенциально новым и безопасным способом борьбы со старением мышц.
Гастри́н
Гастри́н — гормон, производимый G-клетками желудка, расположенными в основном в пилорическом отделе желудка, а также G-клетками поджелудочной железы.
Гастрин связывается со специфическими гастриновыми рецепторами в желудке. Рецепторы к гастрину являются метаботропными, их эффекты реализуются через повышение активности гормончувствительной аденилатциклазы. Результатом усиления аденилатциклазной активности в париетальных клетках желудка является увеличение секреции соляной кислоты.
Гастрин также увеличивает секрецию пепсина главными клетками желудка, что, вместе с повышением кислотности желудочного сока, обеспечивающим оптимальный pH для действия пепсина, способствует оптимальному перевариванию пищи в желудке.
Одновременно гастрин увеличивает секрецию бикарбонатов и слизи в слизистой желудка, обеспечивая тем самым защиту слизистой от воздействия соляной кислоты и пепсина. Гастрин тормозит опорожнение желудка, что обеспечивает достаточную для переваривания пищи длительность воздействия соляной кислоты и пепсина на пищевой комок.
Также гастрин увеличивает продукцию простагландина E в слизистой желудка, что приводит к местному расширению сосудов, усилению кровоснабжения и физиологическому отёку слизистой желудка и к миграции лейкоцитов в слизистую. Лейкоциты принимают участие в процессах пищеварения, секретируя различные ферменты и производя фагоцитоз.
Рецепторы к гастрину имеются и в тонкой кишке и поджелудочной железе. Гастрин увеличивает секрецию секретина, холецистокинина, соматостатина и ряда других гормонально активных кишечных и панкреатических пептидов, а также секрецию кишечных и панкреатических ферментов. Тем самым гастрин создаёт условия для осуществления следующей, кишечной, фазы пищеварения.
Секреция гастрина повышается в ответ на холинергическую (блуждающим нервом) и в меньшей степени на симпатическую стимуляцию желудка. Также секреция гастрина повышается инсулином, гистамином, присутствием в желудке или в плазме крови олигопептидов и свободных аминокислот — продуктов расщепления белков. Увеличение секреции гастрина в ответ на олигопептиды и свободные аминокислоты, а также в ответ на симпатическую или холинергическую стимуляцию является физиологическим механизмом инициации пищеварения при виде и запахе пищи или при поступлении пищи в желудок. Секреция гастрина также повышается при гиперкальциемии.
Угнетается секреция гастрина высоким уровнем соляной кислоты в желудке (что является одной из отрицательных обратных связей, регулирующих секрецию гастрина), простагландином Е, эндогенными опиоидами — эндорфинами и энкефалинами, аденозином, кальцитонином. Сильно угнетает секрецию гастрина соматостатин, одновременно угнетающий секрецию других панкреатических и кишечных пептидов — холецистокинина, секретина, ВИП и др. Повышение гастрином секреции соматостатина, угнетающего секрецию гастрина, является ещё одним примером отрицательной обратной связи.
Секреция гастрина также угнетается холецистокинином и секретином. Физиологическое значение этого механизма состоит в уменьшении секреции кислоты и пепсина после начала кишечной фазы пищеварения и обеспечении функционального покоя опустошившегося желудка, а также в обратной связи, ограничивающей гиперсекрецию кислоты (поскольку уровни секретина и холецистокинина зависят от pH поступающей в двенадцатиперстную кишку пищевой кашицы).
Глюкагон
Глюкагон — гормон альфа-клеток островков Лангерганса поджелудочной железы. По химическому строению глюкагон является пептидным гормоном.
Молекула глюкагона состоит из 29 аминокислот и имеет молекулярный вес 3485 дальтон. Глюкагон был открыт в 1923 году Кимбеллом и Мерлином.
Механизм действия глюкагона обусловлен его связыванием со специфическими глюкагоновыми рецепторами клеток печени. Это приводит к повышению опосредованной G-белком активности аденилатциклазы и увеличению образования цАМФ. Результатом является усиление катаболизма депонированного в печени гликогена (гликогенолиза).[источник не указан 680 дней] Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ — глюконеогенеза. Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ. Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне. Глюкагон также активирует глюконеогенез, липолиз и кетогенез в печени.
Эндорфи́ны
Эндорфи́ны (эндогенные (греч. ενδο (внутри) + греч. γένη (колено, род)) + морфины (от имени древнегреческого бога Морфей (греч. Μορφεύς или Μορφέας — «тот, кто формирует сны»)) — группа полипептидных химических соединений, по способу действия сходных с опиатами (морфиноподобными соединениями), которые естественным путем вырабатываются в нейронах головного мозга и обладают способностью уменьшать боль, аналогично опиатам, и влиять на эмоциональное состояние. Эндорфины образуются из вырабатываемого гипофизом вещества — беталипотрофина (beta-lipotrophin); считается, что они контролируют деятельность эндокринных желез в организме человека[1][2]. Высокие количества эндорфинов могут привести человека в состояние эйфории, из-за чего его ошибочно называют «гормоном счастья» или «гормоном радости», хотя на самом деле эйфория вызывается гораздо более сложными процессами и взаимодействием нескольких нейромедиаторов, из которых эндорфины не самые важные.
Выработка эндорфинов увеличивается в ответ на стресс как защитная реакция с целью обеспечения физиологического выхода из стресса, то есть без срыва адаптации и без формирования постстрессорных нарушений и заболеваний[3]. В 1988 году впервые была сформулирована подтвердившаяся впоследствии гипотеза о так называемых стресс-лимитирующих системах организма, которые задействуются при активации внешних и внутренних стресс-факторов. Ключевой стресс-лимитирующей системой является опиоидная система[4]. Также увеличение выработки эндорфинов приводит к снижению болевых ощущений.
Было установлено, что эндорфины выделяются у лабораторных животных, подвергающихся периодическим электрическим ударам в металлической клетке, иммобилизационному или холодовому стрессу. Кроме того, считается, что эндорфины производятся в организме человека во время боевых действий, спортивных соревнований и т. п., что позволяет до определённой степени игнорировать боль и мобилизовать резервы. О том, что раны победителей заживают быстрее, чем раны побежденных, было известно еще в Древнем Риме.
Популярное представление о том, что эндорфины являются «гормонами счастья» или «гормонами радости», базируется на том, что введение в организм наркотиков, сходных с эндорфинами, в частности морфина и других опиатов, приводит к сильной эйфории. На самом деле эйфория вызывается побочным действием на другие нейромедиаторы, в частности дофамин[5]. Кроме того, существуют другие сильные эйфоретики, не имеющие отношения к эндорфинам, например кокаин и MDMA, почти все они являются агонистами дофаминовых рецепторов.
6. Механизм действия пептидных гормонов.
Достигнув клеток-мишеней, гормоны связываются с мембранными или цитоплазматическими белками-рецепторами. На поверхности мембраны и в цитозоле клетки находятся рецепторы к различным гормонам кроме того, к одному и тому же гормону на отдельных клетках могут быть разные рецепторы. Рецепторные белки характеризуются избирательностью и обратимостью связывания, высоким сродством к гормону и специфичностью эффекта. Выделяют мембранно-внутриклеточный (косвенный) и цитозольный (прямой) механизмы действия гормонов на клетку.
Мембранно-внутриклеточный механизм действия характерен Д гидрофильных (полярных, растворимых в воде) гормонов, которые не могут проникнуть внутрь клетки. Их мембранные рецепторы представляют собой интегральные белки, пронизывающие цитоплазматическую мембрану насквозь и связанные с различными системами проведения сигнала: G-белками, ферментами и ионными каналами.
Действие гидрофильных гормонов происходит через образование в клетке вторичных посредников (мессенджеров) - веществ, передающих в клетку сигнал о том, что гормон связался с рецептором. В качестве посредников могут выступать циклические нуклеотиды (г/АМФ, г/ГМФ), ионы Са2+, инозитолтрифосфат, диацилглицерол, простагландины, оксид азота (NO) и др. Так, почти все гормоны гипофиза, эпифиза, щитовидной железы, паращитовидных желез, надпочечников и др. действуют через образование цАЛФ. В то же время эффект окситоцина, кальцитонина, инсулина и некоторых других гормонов осуществляется через образование 1/ГМФ.
Белково-пептидные гормоны и производные аминокислот вызывают