Автор работы: Пользователь скрыл имя, 14 Января 2011 в 13:22, доклад
Фуллерены - сферические полые кластеры углерода с числом атомов n=30-120. Известны получаемые в достаточно больших количествах С60,C70,C76 и другие. Наиболее устойчивую форму имеет С60, сферическая полая структура которого состоит из 20 шестиугольников и 12 пятиугольников. По данным рентгеноструктур-ного анализа средний диаметр сферы –0,714 нм [1]. Внутренняя связь в фуллерене между атомами больше чем внешняя, поэтому фуллерены образуют твердое тело при конденсации с сохранением своей внутренней структуры (фуллерит) с плотностью 1,65 гр/см3.
Рис.13. Результаты оптимизации фуллереновой дуги по давлению гелия(1-5) и аргона(6).I=80А, d=5мм, 1-∆ma, 2-mc, 3-∆mk; 4,6-α,5-dn/ح,6-аргон. |
Рис 14. Результаты оптимизации фуллереновой дуги по межэлектродному расстоянию. Phe=100тор,I=81-86A,1-∆ma/t, 2-mc/c, 3-mk /t, 4-α. |
Рис.15. Зависимость содержания фуллеренов в саже α от давления газа при различных диаметров сборника фуллереновой сажи Dс. 1-3-гелий, 4-неон, 5-аргон; Dc(в мм) 1,4,5-96, 2-52, 3-30 ; I,А : 1-3-80, 4-210, 5-200. |
Рис.16. Зависимость скорости эрозии анода ∆ma/ح и содержание фуллеренов в сажи α от тока дуги при различных диаметрах анода Phe=100 торр, Dc=96мм, d=5 мм, Da(в мм ): 1-6, 2-20 |
Малый же выход фуллеренов в аргоне обусловлен характерными для высокого давления неблагоприятными условиями по взаимодиффузии и температурному режиму углеродных кластеров. К сожалению, авторы не предприняли попыток создать анодное пятно и эффективный выход углерода в плазму при пониженных давлениях аргона ( например сильно уменьшая диаметр анода с целью повышения плотности тока).
Добавка к гелию азота (~10%),водорода и кислорода (~1%) приводила к сильному уменьшению выхода фуллеренов.
Оптимизация по длине межэлектродого промежутка показала на наличие максимума доли фуллеренов в саже при межэлектродном промежутке 5мм и его стабилизации на несколько пониженном уровне при расстояниях 7-10мм. При малых расстояниях до 5мм с его уменьшением доля фуллеренов падает, но растёт количество осаждаемой сажи вследствие увеличения доли энергии разряда
Рис.17.
Зависимость скорости эрозии
анода ∆ma/t (a) и содержания фуллеренов
в саже a
(б) от тока дуги. Dc=96 мм,d=5мм,Da=6мм;1-гелий,РHe= |
передаваемой электродам. Уменьшение же доли фуллеренов в саже можно объяснить выбросом из электродов микрочастиц, не успевающих испариться в промежутке. Зависимость выхода |
фуллеренов от тока дуги имеет явный максимум, увеличивающийся по амплитуде и сдвигающийся в область меньших токов при уменьшении диаметра анода. К сожалению не исследовался анод с диаметром <6мм. Уменьшение выхода при больших токах авторы связывают с ростом скорости струи, что не даёт увеличить концентрацию, но уменьшает время пролёта до осаждения. Возможен также перегрев электрода и выход из него пылевой, а не атомной фазы.
Диаметр сборника сажи не влияет на выход фуллеренов при D>50мм, т.к. струя на этих расстояниях уже успевает разредиться и охладиться. При уменьшении диаметра до 30мм выход фуллеренов уменьшается из-за малого времени преобразования кластеров углерода при пролёте к нему.
Интересен специально поставленный эксперимент по определению выхода С60 и С70, высаживаемых на различных расстояниях от дуги [21].Высадка фуллеренов начинается на расстояниях ~12мм и стабилизуется при расстояниях более 30 мм.(рис.18)
Весьма важным является также проверка полярности эрозируемого электрода. При эрозирующем угольном катоде ( за счёт его малого диаметра) и металлическом (медь, молибден) не эрозирующем аноде фуллеренов в саже практически нет. Наоборот, при эрозирующем аноде фуллерены эффективно образуются как при угольном так и при металлическом катоде.
Авторами
также проверялось влияние
Рис.18.Зависимость
интенсивности ионных токов для
различных компонент масс-
Рис.19. Конструкция экспериментального макета,1-графитовый стакан, 2-тепловой мостик, 3-водоохлаждаемый токоввод, 4-графитовый стержень, 5-водоохлаждаемый сборник сажи, 6-водоохлаждаемый экран |
Результаты рассмотренных работ нашли подтверждение в работах Институте химической физики в Черноголовке[25]. Схема установки представлена на рис.20. Первоначально сбор сажи осуществлялся на наружный водоохлаждаемый цилиндр из нержавеющей стали диаметром 180мм. Графитовые анод и катод имели, соответственно, размеры 6 и 12 мм. Межэлектродное расстояние ~4мм. Оптимизация по давлению гелия и току приведена на рис.21,22. |
Рис.20.
Установка для получения
Рис.21. Зависимость выхода фуллеренов от давления гелия :a- постоянный ток, b-переменный ток |
Рис.22. Зависимость выхода фуллеренов от тока дуги: a-постоянный ток ;b-переменный ток.
В оптимальных режимах выход фуллеренов достигал 10-12%. При охлаждении сборника жидким азотом выход фуллеренов увеличивался в ~1,4 раза за счёт снижения температуры верхних слоёв сажи, в наибольшей степени подвергающихся нагреву излучением дуги. Установкой дополнительного, охлаждаемого водой цилиндра, (9) диаметром 110 м, длиной более 200 мм и применением подвижного расходуемого анода, когда дуга перемещается вдоль сборника сажи, создавая тонкий равномерный слой со слабым облучением от дуги (из-за острого, также позволило повысить выход фуллеренов до 16,8% Затенение внешнего цилиндра (3) используемой вместо цилиндра витой спиралью (9) с прорезями позволило повысить выход фуллеренов с цилиндра (3) до 24,3%. Авторы делают вывод о снижении выхода фуллеренов под действием излучения дуги в процессе осаждения сажи и при толстом плохо теплопроводном слое сажи за счёт нагрева её поверхности.
3.5. Сжигание и пиролиз углеродосодержащих соединений
В ряде работ, указанных в обзорах [1] кластеры углерода С50,С60,С70 и др. обнаруживались в пламенах органических соединений. Сжигался бензол С6Н6 и ацетилен С2Н2, подаваемый в смеси с кислородом через сверх звуковое сопло диаметром 0,8мм в откачиваемую камеру с р~10-3 торр. Продукты сгорания отбирались с помощью кварцевых зондов на различных расстояниях от среза горелки и исследовались в масс-спектрометре. Распределение отрицательных и положительных кластеров по массе показано на рис.23,24.
Расстояние, мм рис.23. Зависимость концентрации отрицательных заряженных кластерных ионов углерода от расстояния от края горелки в пламени бензола |
Рис.24.Масс-спектр положительных кластерных ионов углерода, полученный в пламени бензола с отношением (С)/(О)=0,76 при скорости подачи топлива в горелку 42 см/с, при отборе газа на расстоянии 15 мм от края горелки. |
Концентрация кластеров в пламени достигала 108 см-3 при температуре 2100 К. Повышение температуры на 200 К приводило к существенному снижению концентрации С60+. Пламя ацетилена было богаче более крупными кластерами, чем пламя бензола.
В работах [26] исследовались продукты пиролиза бурого угля при Т=370-500 0С и давлением водорода ~100 атм. в течение 2,5 часов. После удаления летучих фрагментов при Т=4000С в камере пониженного давления получалась жидкокристаллическая смолистая метафаза 92,7%С и 4,8%H, 1%N, 1.5 %O. При лазерном облучении метафазы образовывалась летучая фракция 60-100% С60, где количество С60 определялось сортом и давлением буферного газа Ar,H2,CH4, C6H6.
В работе [27] исследовался продукт пиролиза нафталина С10Н6 в кремниевой трубе, нагретой с помощью пропановой горелки до Т»1300К. В продукте пиролиза содержался ~1% C60 и все промежуточные кластеры образования С60 из С10 –двойное ароматическое кольцо.
3.6. Выводы
Проведённое рассмотрение показывает, что наиболее дешёвым и производительным является осаждение фуллеренов из плазмы дуговых разрядов. При этом среднее содержание фуллеренов в осадке составляет ~15¸16%. Имеются соображения [28] об эффективном получении фуллеренов в том числе в плазмотроне с плазменным соплом 0,75м килогерцового диапазона Г. Чуриловым в Красноярском научном центре (институт физики). К сожалению. не указаны конкретные параметры установки.
К настоящему времени
дуговой метод получения
В последних работах на конференции “Углерод: фундаментальные проблемы науки, материаловедения, технологии”, октябрь 2002 г. речь идёт только о технологической доводке процесса. В[29] (институт физики, Черноголовка) исследуется влиянии чистоты графитовых электродов. Содержание фуллеренов в саже увеличивается со степенью чистоты графита. Для графитов с примесью 4% (ГС), 8*10-4(СЭ), 2*10-4(СЭУ) содержание фуллеренов было соответственно, 8,16 и 17%.
В [30] (институт металлоорганической химии, Нижний Новгород) создана автоматизированная установка с загрузкой до 70 графитовых стержне, производительностью 500 граммов смеси фуллеренов, в саже содержалось ~7% фуллеренов.
4. Заключение. Задачи исследования
Фуллерены имеют многие перспективные области применения. Сдерживающим фактором является их цена, которая может быть существенно снижена за счёт повышения выхода фуллеренов с 15% до 70-90%, обеспечивающем технологическое применение без дорогой операции очистки фуллеренов растворением их и перегонкой растворителя. Достаточно сказать, что предельная растворимость фуллеренов С60,С70 в бензоле составляет 1,5 г/литр, а в толуоле ~2,5 г/литр. Существенное удешевление также дала бы замена гелия аргоном или более дешёвым газом.
Необходимо переконструирование самого разряда, обеспечивая следующее:
1. Регулированное увеличение концентрации углерода в фуллеренообразующей среде.
2. Независимое регулирование увеличения времени нахождения углерода в среде при Т~2500¸1500 К, для чего снизить скорость потока среды, сделать поток слабо расширяющимся, или не расширяющимся, существенно увеличить длину пути потока.
3. Высадку фуллеренов вынести из возможного температурного и лучевого действия разряда.
4. Требуется теоретическое рассмотрение синтеза фуллеренов в рассматриваемых условиях с учётом обратных процессов.
Литература