Автор работы: Пользователь скрыл имя, 20 Января 2011 в 13:36, реферат
Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы.
Если отдельные фазы системы не соединены между собой электрически (рис. 1 а)), то такую систему называют несвязанной. Несвязанная система не обладает никакими особыми свойствами, и если между фазами отсутствует и магнитная связь, то такая совокупность цепей вообще не может рассматриваться как многофазная.
3.11 Трехфазные цепи.
Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы.
Если отдельные фазы системы не
соединены между собой
Соединение фаз системы между собой (рис. 1б)) придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии. Одним из очевидных преимуществ связанной системы (рис. 1) является сокращение с шести до четырех числа проводников, соединяющих источники с нагрузкой. При благоприятных обстоятельствах это число может быть уменьшено до трех. В дальнейшем мы отметим целый ряд других преимуществ, которым обладают связанные системы.
Любая многофазная система может быть симметричной и несимметричной. Симметрия системы определяется симметрией ЭДС, напряжений и токов. Под симметричной многофазной системой ЭДС, напряжений или токов понимают совокупность соответствующих величин, имеющих одинаковые амплитуды и смещенных по фазе на угол 2p /m по отношению друг к другу, где m - число фаз системы. Если для обозначения фаз трехфазной системы использовать первые буквы латинского алфавита, то симметричную систему ЭДС можно записать в виде
Û | (1) |
Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.
Основное свойство симметричных многофазных систем заключается в том, что сумма мгновенных значений величин образующих систему в каждый момент времени равна нулю. Для изображений величин образующих систему это свойство означает равенство нулю суммы фазных векторов. В справедливости этого утверждения легко убедиться на примере трехфазной системы, если в области изображений сложить числа в скобках в правой части выражений (1).
Многофазная система
симметрична только тогда, когда
в ней симметричны ЭДС, токи и
напряжения. Если принять равными
нулю внутренние сопротивления источников
питания или включить их значения
в сопротивления нагрузки, то условие
симметрии системы сводится к
симметрии ЭДС и равенству
комплексных сопротивлений
Za = Zb = Zc . | (2) |
В дальнейшем мы
будем считать, что источники
питания являются источниками ЭДС
и использовать условия симметрии
системы в виде выражений (1) и (2).
В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.
На электрических схемах, если это необходимо, начало и конец обозначают буквами латинского алфавита. На рис. 1 а) начала элементов соответствуют индексам XYZ, а концы - ABC. В дальнейшем мы будем использовать строчные буквы для нагрузки, а прописные для источников ЭДС.
Существуют два способа
Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.
При анализе
многофазных систем вводится ряд
понятий, необходимых для описания
процессов. Проводники, соединяющие
между собой источники и
Электродвижущие силы источников многофазной системы (eA, EA, EA, eB, EB, EB, eC, EC, EC), напряжения на их выводах (uA, UA, UA, uB, UB, UB, uC, UC, UC) и протекающие по ним токи (iA, IA, IA, iB, IB, IB, iC, IC, IC) называются фазными. Напряжения между линейными проводами (UAB, UAB, UBC, Uac, UCA, UCA) называются линейными.
Связь линейных напряжений с фазными можно установить через разность потенциалов линейных проводов рис. 1 б) как uAB = uAN + uNB = uAN - uBN = uA - uB или в символической форме
UAB
= UA - UB
; UBC = UB -
UC ;
UCA = UC - UA . |
(3) |
Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.
Каждый из векторов линейных напряжений представляет собой сумму одинаковых по модулю векторов фазных напряжений (Uф = UA = UB =UC), смещенных на угол 60° . Поэтому линейные напряжения также образуют симметричную систему и модули их векторов (Uл = UAB = UBC =UCA) можно определить как .
Выражения (3) справедливы как для симметричной системы, так и для несимметричной. Из них следует, что векторы линейных напряжений соединяют между собой концы фазных (вектор UCA рис. 3). Следовательно, при любых фазных напряжениях они образуют замкнутый треугольник и их сумма всегда равна нулю. Это легко подтвердить аналитически сложением выражений (3) - UAB + UBC + UCA = UA - UB + UB - UC + UC - UA = 0.
Тот факт, что геометрически векторы линейных напряжений соединяют концы векторов фазных, позволяет сделать заключение о том, что любой произвольной системе линейных напряжений соответствует бесчисленное множество фазных. Это подтверждается тем, что для создания фазной системы векторов при заданной линейной, достаточно произвольно указать на комплексной плоскости нейтральную точку и из нее провести фазные векторы в точки соединения многоугольника линейных векторов.
Из уравнений Кирхгофа для узлов a, b и c нагрузки соединенной треугольником (рис. 2 б)) можно представить комплексные линейные токи через фазные в виде
IA = Iab - Ica ; IB = Ibc - Iab ; IC = Ica - Ibc . | (4) |
В случае симметрии
токов IA = IB
= IC = Iл и Iab
= Ibc = Ica = Iф,
поэтому для них будет справедливо такое
же соотношение, как для линейных и фазных
напряжений в симметричной системе при
соединении звездой, т.е
. Кроме того, их сумма в каждый момент
времени будет равна нулю, что непосредственно
следует из суммирования выражений (4).
Перейдем теперь к рассмотрению конкретных соединений трехфазных цепей.
Пусть фазы источника и нагрузки
соединены звездой с
Ia
= UA/Za
; Ib = UB/Zb
и
Ic = UC/Zc. |
(5) |
Ток в нейтральном проводе можно определить по закону Кирхгофа для нейтральной точки нагрузки. Он равен
IN =Ia +Ib +Ic . | (6) |
Выражения (5) и (6) справедливы всегда, но в симметричной системе Za = Zb = Zc= Z, поэтомуIN =Ia +Ib +Ic= UA/Za+UB/Zb+UC/Zc = (UA+UB+UC)/Z = 0, т.к. по условию симметрии UA+UB+UC=0. Следовательно, в симметричной системе ток нейтрального провода равен нулю и сам провод может отсутствовать. В этом случае связанная трехфазная система будет передавать по трем проводам такую же мощность, как несвязанная по шести. На практике нейтральный провод в системах передачи электроэнергии сохраняют, т.к. его наличие позволяет получать у потребителя два значения напряжения - фазное и линейное (127/220 В, 220/380 В и т.д.). Однако сечение нейтрального провода обычно существенно меньше, чем у линейных проводов, т.к. по нему протекает только ток, создаваемый асимметрией системы.
При симметричной нагрузке токи во всех фазах одинаковы и смещены по отношению друг к другу на 120° . Их модули или действующие значения можно определить как I = Uф/Z.
Векторные диаграммы
для симметричной и несимметричной
нагрузки в системе с нейтральным
проводом приведены на рис. 4 б) и
в).
При отсутствии нейтрального провода сумма токов в фазах нагрузки равна нулю Ia+Ib+Ic =0. В случае симметричной нагрузки режим работы системы не отличается от режима в системе с нейтральным проводом.
При несимметричной нагрузке между нейтральными точками источника и нагрузки возникает падение напряжения. Его можно определить по методу двух узлов, перестроив для наглядности схему рис. 5 а). В традиционном для теории электрических цепей начертании она будет иметь вид рис. 5 б). Отсюда
(7) |
где Ya=1/Za, Yb=1/Zb, Yc=1/Zc - комплексные проводимости фаз нагрузки.