Наночастицы

Автор работы: Пользователь скрыл имя, 18 Декабря 2017 в 16:12, курсовая работа

Описание работы

В первой половине 50-х годов XX в перед Физико-техническим институтом им. А.Ф. Иоффе была поставлена задача создать отечественные полупроводниковые приборы для внедрения в отечественную промышленность. Перед лабораторией стояла задача: получение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. При участии Алфёрова Жореса Ивановича были разработаны первые отечественные транзисторы и силовые германиевые приборы. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило также кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике.

Содержание работы

Введение.
Глава 1. Квантовые ямы
1.1 Технология изготовления квантовых ям
1.2 Особенности энергитических уровней
1.3 Применение квантовых наноструктур в электронике
Глава 2. Квантовые проволоки, нити
2.1 Квантовая проволока
2.2 Особенности квантовых проволок
2.3 Квантовые нити. Изготовление квантовых нитей
Глава 3. Квантовые точки
3.1 Технология изготовления квантовых точек
3.2 Особенности квантовых точек
Глава 4. Сверхрешётки
4.1 Сверхрешётки. Виды сверхрешеток
4.2 Физические свойства сверхрешеток
4.3 Технология изготовления сверхрешеток
4.4 Энергетическая структура полупроводниковых сверхрешеток
4.5 Исследование полупроводниковых сверхрешеток
4.6 Применение сверхрешеток в электронике
Заключение
Список литературы

Файлы: 1 файл

Документ Рома Microsoft Word 97-2003.doc

— 276.50 Кб (Скачать файл)

 

4.6 Применение  сверхрешеток в электронике

Большую группу применения составляют оптоэлектронные приборы - фотоприемники, светоизлучающие приборы (инжекционные лазеры и светодиоды), пассивные оптические элементы, волноводы, модуляторы, направленные ответвители и др.

Инжекционные лазеры на гетеропереходах имеют преимущества перед обычными полупроводниковыми лазерами, поскольку инжектированные носители в лазерах на гетеропереходах сосредоточиваются в узкой области. Поэтому состояние инверсной населенности носителей заряда достигается при значительно меньших плотностях тока, чем в лазере на p-n-переходе. Применение вместо одиночных гетеропереходов многослойных сверхрешеточных структур позволяет изготовить лазеры, работающие на нескольких длинах волн.

В качестве примера на рис. 10 показано схематическое изображение структуры многоволнового лазера [6]. В структуре имеется четыре активных слоя Alx Ga1-x As разного состава (x = x1 , x2 , x3 , x4 ), благодаря которым лазер одновременно работает на четырех длинах волн 1 , 2 , 3 и 4 . Активные слои отделены друг от друга промежуточными слоями Aly Ga1- y As (y > x1 , x2 , x3 , x4 ). Для создания p-n-переходов в структуре проводилась локальная диффузия Zn.

Рис. 10

 

Большую группу приборов на полупроводниковых сверхрешетках составляют устройства с отрицательным дифференциальным электросопротивлением. На основе полупроводниковых сверхрешеток изготавливают также различные транзисторы. Достаточно большая частота квантовых осцилляций электронов в сверхрешетках значительно расширяет возможности изготовленных на их основе приборов СВЧ.

 

Заключение

На основе предложенных в 1970 году Ж.И.Алфёровым и его сотрудниками идеальных переходов в многокомпонентных соединениях InGaAsP созданы полупроводниковые лазеры, работающие в существенно более широкой спектральной области, чем лазеры в системе AIGaAs. Они нашли широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

В России (впервые в мире) было организовано крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

Прошло более 30 лет с тех пор, как началось изучение квантовых эффектов в полупроводниковых структурах. Были сделаны замечательные открытия в области физики низкоразмерного электронного газа, достигнуты поразительные успехи в технологии, построены новые электронные и оптоэлектронные приборы. И сегодня в физических лабораториях активно продолжаются работы, направленные на создание и исследование новых квантовых структур и приборов, которые станут элементами больших интегральных схем, способных с высокой скоростью перерабатывать и хранить огромные объемы информации. Возможно, что уже через несколько лет наступит эра квантовой полупроводниковой электроники.

 

Список литературы

1. Эсаки Л. Молекулярно-лучевая  эпитаксия и развитие технологии полупроводниковых сверхрешеток и структур с квантовыми ямами.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры.: Пер. с англ./Под ред. Л. Ченга, К Плога.- М.: Мир, 1989.- с. 7 – 36.

2. Херман М. Полупроводниковые  сверхрешетки.- М.: Мир, 1989.- 240 с.

3. Силин А.П. Полупроводниковые  сверхрешетки // Успехи физических  наук. – 1985. - т.147, вып. 3.- C. 485 - 521.

5. Бастар Г.. Расчет зонной  структуры сверхрешеток методом  огибающей функции.- В кн: Молекулярно-лучевая  эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 312 –347.

6. Цанг В.Т. Полупроводниковые  лазеры и фотоприемники, полученные  методом молекулярно-лучевой эпитаксии.- В кн: Молекулярно-лучевая эпитаксия  и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 463 –504.

 


Информация о работе Наночастицы