Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 21:10, реферат
До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106 МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.
m=qvr/2c.
Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса) L, представляющим собой вектор, направленный вдоль оси вращения и имеющий величину Mvr. Здесь L=[rp]= [rv], в данном случае r^v. И заряд, и масса участвуют в одном и том же вращении (вращательном движении), поэтому вектор магнитного момента коллинеарен вектору углового момента, с которым он связан соотношением
=(q/2Mc)L=gL,
где g=q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра).
Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.
Выражение 2.3 позволяет записать
классическое уравнение
где –напряженность внешнего магнитного поля.
Если в отсутствии магнитного поля вращать вектор с угловой скоростью , то, в соответствии с законом Ньютона для вращательного движения, выражение для d /dt будет иметь вид:
Из сопоставления выражений 2.4
и 2.5 следует, что действие
Таким образом, в постоянном
магнитном поле вектор
Если перейти к системе
Рис.1. Прецессия
магнитного момента в магнитном
поле
Допустим теперь, что кроме поля введено другое, более слабое поле 1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению (рис.1). Если скорость вращения поля 1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [ 1], который стремится повернуть ядерный момент в плоскость, перпендикулярную . Если направление 1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.
Если, однако, само поле 1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента , т.е. большие изменения угла между и 0. При изменении угловой скорости вращения поля 1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса.
Аналогичное явление резонанса должно
наблюдаться, когда направление поля
1 фиксировано, а величина его меняется
по синусоидальному закону с частотой,
близкой к частоте ларморовой прецессии.
Это происходит потому, что такое поле
можно представить в виде суперпозиции
двух равных полей, вращающихся с равными
угловыми скоростями в противоположных
направлениях (рис.2). При этом поле,
вращающееся в направлении, противоположном
направлению ларморовой прецессии, не
будет оказывать влияния на резонанс.
Рис.2. Разложение вектора магнитного поля на два вектора, вращающиеся в противоположные стороны.
На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю 0 и направлена вдоль оси х, пропускают переменный ток. Напряжение с частотой w, приложенное к катушке, создает поле, эквивалентное двум вращающимся в противоположных направлениях полям величиной (Н1cos wt+H1sin wt) и (H1cos wt – H1sin wt).
Если w соответствует частоте резонанса, магнитный диполь поглощает энергию поля, создаваемого катушкой, вследствие чего вектор магнитного момента отклоняется в направлении к плоскости ху и во второй (приемной) катушке, расположенной вдоль оси у, наводится э.д.с.
Т.о., рассмотренная здесь классическая модель резонанса, объясняя суть явления, указывает и на экспериментальное его проявление, состоящее в непрерывном поглощении электромагнитной энергии поля Н1.
2.2.Квантово-механическое рассмотрение условий резонанса.
H=-m
Направляя ось z вдоль приложенного постоянного магнитного поля 0, получаем
H=-gh
0Iz
Собственные значения этого гамильтониана являются произведениями величины gh 0 на собственные значения оператора Iz . поэтому возможные значения энергии равны
Е=-gh
0m , m= I , I-1 , … , -I .
Чаще всего для наблюдения
магнитного резонанса
Hвозм=-gh
0xIxcoswt
Оператор Ixимеет отличные от нуля матричные элементы (m’êIx êm), связывающие состояния m и m’, только в случае выполнения равенства m’=m+\-1. В соответствии с этим разрешены переходы только между соседними уровнями, что дает
hw=DE=gh
0
или
w=g
0
Это соотношение позволяет вычислить частоту, при которой можно наблюдать резонанс, если известно, каким образом можно определить g.
Вычислим магнитный и
J=mvr=m(2pr2/T),
а магнитный момент
m=iA
(рассматриваем систему как контур тока i, охватывающий площадь А). Поскольку i= (e/c)(1/T), получаем
m=(е/c)(pr2/T).
Сравнение вычисленных
Эксперимент Штерна – Герлаха.
Существенным для понимания
Классический эксперимент по
доказательству дискретных
Информация о работе Из истории спектроскопии магнитного резонанса