Гальванический ток

Автор работы: Пользователь скрыл имя, 12 Ноября 2015 в 22:47, реферат

Описание работы

Гальванический ток - постоянный электрический ток невысокого напряжения и небольшой силы. Неповрежденная кожа человека обладает высоким омическим сопротивлением и низкой удельной электропроводностью, поэтому в организм ток проникает в основном через выводные протоки потовых и сальных желез, межклеточные щели. Поскольку их общая площадь не превышает 1/200 части поверхности кожи, то на преодоление эпидермиса, обладающего наибольшим электросопротивлением, тратится большая часть энергии тока. Поэтому здесь развиваются наиболее выраженные физико-химические реакции на воздействие постоянным током, сильнее проявляется раздражение нервных рецепторов

Файлы: 1 файл

Электрофорез.docx

— 49.93 Кб (Скачать файл)

Государственное бюджетное образовательное учреждение

высшего профессионального образования

Сибирский Государственный Медицинский Университет

Минздравсоцразвития России

 

 

 

 

 

 

 

 

Кафедра восстановительной медицины, физиотерапии и курортологии

(зав. кафедрой – Зайцев  А. А., к. м. н.)

 

 

 

 

 

Реферат

 

 

 

 

 

 

 

 

 

Выполнил: студент 1225 группы

Скулкина С.В.

 

 

 

 

 

 

 

 

 

г. Томск, 2015

Гальванизация – применение с лечебно-профилактическими целями постоянного непрерывного электрического тока невысокого напряжения (30-80 В) и небольшой силы (до 50 м А), называемого гальваническим.

Метод и вид такого тока получили название по имени итальянского физиолога Луиджи Гальвани. В лечебных целях впервые был применен после изобретения гальванического элемента в XIX в. В России изучением данного метода занимались русские врачи и ученые - А. Т. Болотов, И. К. Грузинов, А. А. Кабат, В. И. Вартанов (диссертация "Гальванические явления в коже лягушки") и многие другие.

Гальванический ток - постоянный электрический ток невысокого напряжения и небольшой силы. Неповрежденная кожа человека обладает высоким омическим сопротивлением и низкой удельной электропроводностью, поэтому в организм ток проникает в основном через выводные протоки потовых и сальных желез, межклеточные щели. Поскольку их общая площадь не превышает 1/200 части поверхности кожи, то на преодоление эпидермиса, обладающего наибольшим электросопротивлением, тратится большая часть энергии тока. Поэтому здесь развиваются наиболее выраженные физико-химические реакции на воздействие постоянным током, сильнее проявляется раздражение нервных рецепторов. Преодолев сопротивление кожи, ток дальше распространяется по пути наименьшего омического сопротивления, преимущественно по межклеточным пространствам, кровеносным и лимфатическим сосудам, оболочкам нервов и мышцам.

Прохождение тока через биологические ткани сопровождается рядом первичных физико-химических сдвигов, лежащих в основе физиологического и лечебного действия фактора.

Физиологическое и лечебное воздействие

Под действием приложенного к тканям внешнего электромагнитного поля в них возникает ток проводимости. Положительно заряженные частицы (катионы) движутся по направлению к отрицательному полюсу (катоду), а отрицательно заряженные (анионы) - к положительно заряженному полюсу (аноду). Подойдя к металлической пластине электрода, ионы восстанавливают свою наружную электронную оболочку (теряют свой заряд) и превращаются в атомы, обладающие высокой химической активностью (электролиз) (рис. 1). Взаимодействуя с водой, эти атомы образуют продукты электролиза. Под анодом образуется кислота (HCI), а под катодом - щелочь (КОН, NaOH). Один из вариантов таких реакций представлен на схеме

Н2 + NaOH ← 2 Н2О + Na - + → Na+ Сl- ← + 4CI + 2 Н2О → 4HCI + О2

Продукты электролиза являются химически активными веществами и в достаточной концентрации могут вызвать химический ожог подлежащих тканей. Для его предотвращения под электродами размещают смоченные водой прокладки, что позволяет добиться достаточного разведения химически активных соединений.

Плотность тока проводимости определяется напряженностью электромагнитного поля и зависит от электропроводности тканей. В силу низкой электропроводности кожи движение заряженных частиц в подлежащие ткани происходит в основном по выводным протокам потовых желез и волосяных фолликулов и - в наименьшей степени - через межклеточные пространства эпидермиса и дермы. В глубже расположенных тканях максимальная плотность тока проводимости наблюдается в жидких средах организма: крови, моче, лимфе, интерстиции, периневральных пространствах. Напротив, через плазмолемму проходит тысячная доля тока проводимости, а перемещения ионов в клетке ограничены чаще всего пространством компартмента. Следует учитывать, что электропроводность тканей увеличивается при сдвигах их кислотно-основного равновесия, возникающих вследствие воспалительного отека, гиперемии и пр.

Различия в электрофоретической подвижности ионов обусловливают локальные изменения содержания ионов одинакового знака на различных поверхностях клеточных мембран, вследствие чего в компартменте происходит образование виртуальных (промежуточных, кратковременных) полюсов (рис. 2) и локального противотока ионов. В результате возникает скопление ионов противоположного знака по обеим сторонам клеточных мембран, межтканевых перегородок и фасций.

Перемещение ионов под действием постоянного электрического тока вызывает изменение их нормального соотношения в клетках и межклеточном пространстве. Такая динамика ионной конъюнктуры особенно влияет на плазмолемму возбудимых тканей, изменяя их поляризацию.

Под катодом при действии постоянного тока сначала происходит снижение потенциала покоя при неизменном критическом уровне деполяризации (КУД) возбудимых мембран (рис. 3А). Оно обусловлено инактивацией потенциально зависимых калиевых ионных каналов и приводит к частичной деполяризации возбудимых мембран (физиологический катэлектротон). Вместе с тем, при длительном воздействии тока происходит инактивация и потенциалзависимых натриевых ионных каналов, что приводит к позитивному смещению КУД и уменьшению возбудимости тканей. Под анодом возникает активация потенциалзависимых калиевых каналов.

В результате возрастает величина потенциала покоя при неизменном КУД, что приводит к частичной гиперполяризации возбудимых мембран (физиологический анэлектротон, рис. 3Б). В последующем вследствие негативного смещения КУД, связанного с устранением стационарной инактивации некоторого количества натриевых каналов, возбудимость тканей возрастает. 
Наряду с перемещением ионов электрический ток изменяет проницаемость биологических мембран и увеличивает пассивный транспорт через них крупных белковых молекул (амфолитов) и других веществ (явление электродиффузии). Кроме того, под действием электрического поля в тканях возникает разнонаправленное движение молекул воды, включенных в гидратные оболочки соответствующих ионов (главным образом, Na+, K+, СГ). Из-за того, что количество молекул воды в гидратных оболочках катионов больше, чем у анионов содержание воды под катодом увеличивается, а под анодом уменьшается (электроосмос).

Таким образом, постоянный электрический ток вызывает в биологических тканях следующие физико-химические эффекты:электролиз, поляризацию, электродиффузию и электроосмос.

При проведении гальванизации в подлежащих тканях активируются системы регуляции локального кровотока и повышается содержание биологически активных веществ (брадикинин, калликреин, простагландины) и вазоактивных медиаторов (ацетилхолин, гистамин), вызывающих активацию факторов расслабления сосудов (оксид азота и эндотелины). В результате происходит расширение просвета сосудов кожи и ее гиперемия. В ее генезе существенную роль играет и местное раздражающее действие на нервные волокна продуктов электролиза, изменяющих ионный баланс тканей.

Расширение капилляров и повышение проницаемости их стенок вследствие местных нейрогуморальных процессов возникает не только в месте приложения электродов, но и в глубоко расположенных тканях, через которые проходит постоянный электрический ток. Наряду с усилением крово- и лимфообращения, повышением резорбционной способности тканей, происходит ослабление мышечного тонуса, усиление выделительной функции кожи и уменьшение отека в очаге воспаления или в области травмы. Кроме того, уменьшается компрессия болевых проводников, вследствие электроосмоса более выраженная под анодом. Постоянный электрический ток усиливает синтез макроэргов в клетках, стимулирует обменно-трофические и местные нейрогуморальные процессы в тканях. Он увеличивает фагоцитарную активность макрофагов и полиморфноядерных лейкоцитов, ускоряет процессы регенерации периферических нервов, костной и соединительной ткани, эпителизацию вялозаживающих ран и трофических язв, а также усиливает секреторную функцию слюнных желез, желудка и кишечника.

В зависимости от параметров действующего тока, функционального состояния больного и избранной методики гальванизации, у больного возникают местные, сегментарно-метамерные или генерализованные реакции. Локальные ответы наблюдаются обычно в коже и частично в тканях и органах, расположенных в интерполярной зоне. Реакции более высокого порядка возникают при гальванизации рефлексогенных и паравертебральных зон, а также соответствующих сегментов и структур головного мозга. Так, примером возникновения преимущественно общей реакции организма в ответ на воздействие гальванического тока является гальванизация воротниковой зоны, при которой в ответную реакцию через раздражение шейных симпатических узлов вовлекается сердечно-сосудистая система, улучшается кровообращение в органах, иннервируемых из соответствующего сегмента спинного мозга, улучшаются обменные процессы.

При расположении электродов в области головы могут возникать реакции, характерные для раздражения не только кожного анализатора, но и других: вкусового (ощущение металлического вкуса во рту), зрительного (появление фосфенов) и др.

При поперечном расположении электродов в области висков может возникнуть головокружение как следствие раздражения вестибулярного аппарата.

Постоянный ток действует не только в месте приложения. Его влияние распространяется и на другие органы и ткани, в первую очередь на те, которые инервируются соответствующим сегментом спинного мозга.

Гальванизация стимулирует регуляторную функцию нервной и эндокринной систем, способствует нормализации секреторной и моторной функций органов пищеварения, стимулирует трофические и энергетические процессы в организме, повышает реактивность организма, устойчивость к внешним воздействиям, в частности, повышает защитные функции кожи.

При общей гальванизации увеличивается количество лейкоцитов в крови, несколько повышается СОЭ, улучшается гемодинамика, урежается число сердечных сокращений, повышается обмен веществ (особенно углеводный, белковый).

Малой интенсивности постоянный ток (при плотности до 0,05 мА/см2) способствует ускорению коронарного кровообращения, увеличению поглощения кислорода и отложению гликогена в миокарде. Однако большая сила тока вызывает противоположное действие.

Лечебные эффекты: противовоспалительный (дренирующее-дегидратирующий), анальгетический, седативный (на аноде) вазодилятаторный, миорелаксирующий, метаболический, секреторный (на катоде).

Параметры

Существует понятие «плотность тока» (ПТ). Плотность тока — это сила тока, деленная на площадь электрода. За единицу плотности тока принят мА/см2. 1 мА/см2 — это сила тока, равная 1мА, действующая на площадь активного электрода, равную 1 см2. Терапевтическая плотность тока — малые величины: от 0, 01 до 0,1-0,2 мА/см2. ПТ 0,5 мА/см2 и больше вызывает необратимые изменения в тканях.

Для дозировки энергии в медицине применяется терапевтический коридор плотности тока в 3-х диапазонах:

I. Малая терапевтическая  плотность тока: от 0,01 до 0,04 мА/см2 (сила тока равна от 1 до 4 мА). Используется при острых процессах, болевых синдромах у детей до 4-х лет.

II. Средняя терапевтическая  плотность тока: от 0,04 доО,08мА/см2.

III. Высокая терапевтическая  плотность тока: от 0,08 до 0,1 (0,2) мА/см2. Используется при местном воздействии: затяжные и хронические заболевания.

Процедуры гальванизации дозируют по плотности (или силе) тока и продолжительности воздействия. С лечебной целью используют постоянный ток низкого напряжения (до 80 В) и небольшой силы (до 50 мА). При общих и сегментарно-рефлекторных методиках используют плотность тока 0,01-0,05, а при местных – 0,02-0,08 мА/см ?. При этом максимальный ток применяют при гальванизации конечностей (20-30 мА) и туловища (15-20 мА). На лице его величина обычно не превышает 3-5 мА, а на слизистых рта и носа - 2-3 мА. Одновременно обязательно ориентируются и на ощущения пациента: ток должен вызывать чувство «ползания мурашек» или легкого покалывания. Появление чувства жжения служит сигналом к снижению плотности подводимого тока. Продолжительность процедуры может колебаться от 10-15 (при общих и сегментарно-рефлекторных воздействиях) до 30-40 мин (при местных процедурах).

На курс лечения обычно назначают от 10-12 до 20 процедур, которые могут проводиться ежедневно или через день. При необходимости повторный курс гальванизации проводят через 1 месяц.

Методика

Ток от аппарата подводится по проводам к больному чаще через пластинчатые электроды. Между металлической пластинкой и телом для предупреждения ожогов продуктами электролиза помещают гидрофильную прокладку (фланель или специальную пластмассу), смоченную водой. Промежуточной средой между металлическим электродом и кожей может быть также вода, налитая в ванночки. После фиксации электродов включают ток, а затем его постепенно увеличивают до необходимого значения. По окончании процедуры так же плавно уменьшают ток до полного его выключения.

При проведении процедур ток поступает к больному через электроды по токонесущим проводам. Электроды состоят из свинцовых пластин толщиной 0,3-1 мм, влажной гидрофильной матерчатой прокладки и шнура.

Прокладки изготавливают из 12-16 слоев белой фланели. Они должны быть достаточно теплыми, чтобы кожные поры расширились. Во избежание опасности соприкосновения кожи больного с металлической пластинкой необходимо, чтобы прокладка выступала со всех сторон за края пластинки на 1,5-2 см. Назначение прокладки — создание равномерного по плотности контакта электрода с телом больного, снижение высокого сопротивления кожи.

Электроды бывают различной формы и размеров. Чаще применяют электроды прямоугольной формы, но иногда необходима специальная форма электрода, например, полумаска для гальванизации в области лица, «воротник» для гальванизации области верхней части спины и надплечий, воронка для гальванизации области уха, ванночка для гальванизации области глаза. В гинекологической практике применяют специальные полостные электроды — влагалищные, в хирургии (проктологии) — ректальные и т. д. Площадь электродов различна, поэтому различна и площадь прокладок.

В качестве электродов используют свинцовые пластинки, так как они очень гибкие и легко принимают форму тех участков тела, на которые накладываются. Пластинки должны быть гладкими, без острых углов, чтобы плотность тока была равномерной.

Катодный и анодный электроды могут быть одинаковой площади, или один из них может быть меньших размеров — так называемый активный электрод. Плотность тока на 1 см2 прокладки у активного электрода оказывается большей, потому что происходит сгущение силовых линий. При проведении процедуры активный электрод накладывают на участок, где необходимо обеспечить максимальное действие тока.

При назначении гальванизации допустимая сила тока устанавливается соответственно площади активного электрода с учетом особенностей области тела, подвергаемой воздействию, а главное — с учетом состояния больного.

Информация о работе Гальванический ток