Автор работы: Пользователь скрыл имя, 14 Декабря 2011 в 11:32, реферат
Физика твёрдого тела — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалась широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.
Введение…………………………………………………………………………….......стр. 3
Фазовые превращения………………………………………………………………..стр. 5
2.1 Понятие фазовых превращений…………………………………………...стр. 5
2.2 Правило рычага……………………………………………………………..стр. 6
3. Сплавы………………………………………………………………………………….стр. 8
3.1 Общие сведения о сплавах…………………………………………………стр. 8
3.2 Сплавы полупроводников…………………………………………………стр. 9
3.3 Сплавы типа растворов внедрения……………………………………...стр. 11
4. Фазовые диаграммы…………………………………………………………..........стр. 13
Понятие фазовой диаграммы……………………………………………..стр.13
Равновесная фазовая диаграмма………………………………………...стр. 14
Фазовая диаграмма двухкомпонентного сплава………………………стр. 14
Фазовые диаграммы эвтектического типа……………………………..стр. 16
Фазовые диаграммы перитектического типа………………………….стр. 17
5. Список литературы………………………………………………………………...стр. 19
Правило
рычага
В процессе кристаллизации
В точке а,
показывающей состояние сплава
Первое
положение правила отрезков
Чтобы
определить концентрации компон
Следовательно,
для сплава К при температуре t
Количество этих фаз также можно определить. Для определения количества каждой фазы (второе положение правила отрезков) предположим, что сплав К находится при температуре t1.
Если точка а определяет с
Второе положение правила отрезков формулируется так:
Для того чтобы определить количественное соотношение фаз, через заданную точку проводят горизонтальную линию. Отрезки этой линии между заданной точкой и точками, определяющими составы фаз, обратно пропорциональны количествам этих фаз.
Правило отрезков в
двойных диаграммах состояния м
Сплавы
Общие
сведения о сплавах
Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.
Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из не удаленных примесей (природных, технологических и случайных).
Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.
По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.
По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.
В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным — состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений(в том числе карбиды, нитриды, интерметаллиды …) и кристаллиты простых веществ.
Свойства
металлов и сплавов полностью
определяются их структурой (кристаллической
структурой фаз и микроструктурой).
Макроскопические свойства сплавов
определяются микроструктурой и
всегда отличаются от свойств их фаз,
которые зависят только от кристаллической
структуры. Макроскопическая однородность
многофазных (гетерогенных) сплавов достигается
за счёт равномерного распределения фаз
в металлической матрице. Сплавы проявляют
металлические свойства, например: электропроводность и
Сплавы различают по назначению: конструкционные, инструментальные и специальные.
Конструкционные сплавы:
Конструкционные
со специальными свойствами (например,
искробезопасность, антифрикцио
Для заливки подшипников:
Для
измерительной и
Для изготовления режущих инструментов:
В
промышленности также используются жаропрочные
Сплавы
полупроводников
Полупроводниковые материалы - вещества с чётко выраженными свойствами полупроводников в широком интервале температур, включая комнатную (~ 300 К), являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость σ при 300 К составляет 104−10~10 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.
Полупроводниковые материалы по структуре делятся на кристаллические, твёрдые, аморфные и жидкие.
Кристаллические полупроводниковые материалы:
Наибольшее
практическое применение находят неорганические кристал