Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 19:17, курсовая работа
При выводе уравнения предполагалось, что коэффициенты пористости и проницаемости не изменяются с давлением, т.е. пласт недеформируем, вязкость газа также не зависит от давления, газ совершенный, а фильтрация газа в пласте происходит при неизменных во времени температурах газа и пласта (изотермический закон).
Для вывода дифференциального уравнения неустановившейся фильтрации совершенного газа воспользуемся уравнением, которое справедливо для любого сжимаемого флюида:
, (1)
где коэффициенты проницаемости и вязкости постоянны.
1. Теоретическая часть
1.Точное решение осесимметричного притока газа к скважине …………. 2
2.Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения ……………………………………………….7
3.Решение задачи о притоке газа к скважине методом последовательной смены стационарных состояний …………………………………………..14
4.Метод усреднения …………………………………………………………17
2. Расчетная часть
2.1. Рассчитать депрессию на пласт по точной формуле и по приближенным формулам…………………………………………………………………..20
2.1.1. Точное решение …..………………………………………...........20
2.1.2. Расчет по линеаризованной формуле ……………………….….21
2.1.3. Расчет методом последовательной смены стационарных
состояний ………………..………………………………………….……21
2.2. Относительная погрешность расчетов
3. Вывод ……..……………………………………………………………………....22
4. Литература …..……………………………………………………………….…..23
Еще одним приближенным методом, применительно к задачам неустановившейся фильтрации газа, является метод усреднения временной производной по пространству.
В качестве примера рассматривается прямолинейно-параллельная фильтрация реального газа. Соответствующее этому случаю точное дифференциальное уравнение имеет вид
Допущением является то, что коэффициент сверхсжимаемости z(р) можно заменить на где pср - некоторое среднее давление в области фильтрации. Введем обозначение р1=р/z(р). Тогда уравнение примет вид
Пусть
имеется первоначально
Требуется определить давление в пласте в любой момент времени t> 0. Для этого нужно найти решение уравнения (39) в области изменения удовлетворяющее начальному и граничным условиям:
p1
= p10 при t = 0
при x=0, где
при x = L
Как и в методе последовательной смены стационарных состояний принимаем, что в каждый момент времени существует конечная возмущенная область l(t), на границе которой выполняются условия
p12=p102,
при x = l(t)
Центральным моментом в рассматриваемом методе усреднения является принятие условия
равносильного предположению, что во всей части пласта, охваченной возмущением, давление изменяется с одинаковой скоростью; тогда уравнение (39) принимает вид
(44)
Проинтегрировав это уравнение дважды по х получим:
Использовав граничные условия на галерее (41) и на границе возмущенной области (43), в результате получим
(46)
Для нахождения зависимости l(t) проделав ряд преобразований уравнения (39) получаем
1-
Откуда
Подставив выражение l(t) в формулу (46), получим зависимость давления, от координаты и времени.
В
момент Т, когда возмущенная зона
достигнет непроницаемой
Для определения ее продолжительности :
Можно найти приближенное значение T из формулы (47) и убедиться, что погрешность не превышает 3-4%.
В течение второй фазы давление на границе x=L падает и выполняется условие (42). Соотношения для второй фазы истощения газового пласта строятся аналогичным образом. Проделав аналогичные выкладки, получим закон распределения давления по пласту:
и закон изменения давления на галерее:
2. Расчетная часть
В расчетах принимаем:
- k = 0,29ּ10-12 м2
- h = 6 м
- rc=0,08 м
- Rk=300м
- η=1,2ּ10-5Паּс
- Pk=13,8МПа
- m0=0,2
- t = 1час =3600с
- дебит Qат , из условия, что λ=0,004994.
2.1. Рассчет депрессии на пласт по точной формуле и по приближенным формулам
Подставив наши данные, получим:
определим коэффициент
2.1.1.Точное решение
Определим безразмерную величину ξ для r = rc
Сравнивая полученное значение ξ со значениями в таблице 1 для λ=0,004994 заключаем, что ξ < ξ* поэтому безразмерное давление F определим по формуле
.
Выразив давление P=Pc, получим
Pc= FPk = 0.996ּ13,8ּ106 = 13,7ּ106 Па
Депрессия на пласт через 1 час будет равна:
∆P = Pk-Pc = (13,8-13,7)ּ106 = 0,1 МПа.
2.1.2.
Расчет по линеаризованной
Подставляя наши данные в формулу (22), определим забойное давление Pc через 1 час
Депрессия будет равна:
∆ P= (13,8-13,55)ּ106=0,25 МПа.
2.1.3.
Расчет методом
Депрессия будет равна:
∆ P = (13,8-13,54)ּ106=0,26 МПа.
2.2. Относительная погрешность расчетов
1. Расчет по линеаризованной формуле:
2. Расчет методом последовательной смены стационарных состояний:
Вывод
Линеаризованная
формула эффективна только в тех
случаях, когда радиус скважины очень
маленький, потому что в этом случае воронка
депрессии очень крутая и давление по
всему пласту в целом не сильно отличается
от начального. Но при больших радиусах
скважины эта формула будет давать большую
погрешность, т.к. давление по пласту будет
сильно отличаться от начального. В отличие
от линеаризованной формулы, формула последовательной
смены стационарных состояний эффективна
для любых радиусов скважин, но только
для первой фазы движения, т.е. пока воронка
депрессии не достигнет радиуса контура.
Как показали расчеты наиболее точной
является линеаризованная формула.
Литература