Автор работы: Пользователь скрыл имя, 07 Ноября 2010 в 11:37, Не определен
Контрольная работа
В результате, на протяжении большей части XX в. ученые вели дискуссию о том, что было первичным — белки или нуклеиновые кислоты, а также о том, как и на каком этапе произошло их объединение в систему, способную к передаче генетической информации и регуляции биосинтеза белков, то есть являющуюся живым организмом.
В зависимости от ответа на вопрос о первичности белков или нуклеиновых кислот, все существующие гипотезы и концепции можно разделить на две большие группы — голобиоза и генобиоза
Концепция Опарина относится к группе голобиоза — методологического подхода, утверждающего первичность структур клеточного типа, способных к элементарному обмену веществ при участии ферментных белков. Появление нуклеиновых кислот в этой концепции считается завершением эволюции, итогом конкуренции протобионтов. Эту точку зрения можно назвать субстратной.
Сторонники генобиоза исходят из убеждения в первичности молекулярной системы со свойствами первичного генетического кода. Эту группу гипотез и концепций можно назвать информационной. Примером этой точки зрения может служить концепция Дж. Холдейна. Согласно ей, первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к саморепродукции, и поэтому названная им «голым геном».
Вплоть до 1980-х годов имело место четко выраженное противостояние гипотез голобиоза и генобиоза. Оно обрело форму дискуссии при обсуждении вопроса, что старше — голый ген (способность к генетической репродукции) или белковый протобионт (способность к метаболизму). В иной трактовке эта дискуссия стала представлять собой противостояние двух концепций — информационной (генетической) и субстратной (обменно-метаболической).
В рамках этой дискуссии большую популярность приобрела гипотеза английского биохимика П. Деккера, принадлежавшая к направлению голобиоза. Он предположил, что структурной основой предка — биоида — были жизнеподобные неравновесные диссипативные системы. С точки зрения Деккера, они представляли собой открытые микросистемы с мощным ферментативным аппаратом. Биоид подвергался мутациям, накапливал при этом информацию, после чего эволюционировал.
Тем не менее, к началу 1980-х годов чаша весов стала склоняться в пользу концепции генобиоза. Во многом это произошло благодаря новому истолкованию открытого еще Л. Пастером свойства молекулярной хиральности живых организмов. Постепенно ученым стало ясно, что стереохимический код передается одновременно с генетическим кодом. То есть сегодня считается, что если молекулярная хиральность — изначальный и фундаментальный признак живой материи, то способность возрождать хирально чистые молекулярные блоки зародилась столь же рано, как и способность к генетической саморепродукции. Функцией стереохимического кода стало кодирование построения хирально чистых мономеров, без которых невозможно комплиментарное взаимодействие молекул субстрата и ферментов при биохимических реакциях. Это кодирование производится с помощью молекул ДНК или РНК.
Но оставался нерешенным вопрос о том, какая из этих информационных молекул появилась первой и сыграла роль матрицы для первичной комплиментарной полимеризации? Кроме того, по-прежнему стоял вопрос, как могла функционировать протобиотичсская система в отсутствие ферментных бслков, если мы допускаем, что они появились позже?
Ответ на эти вопросы был получен к концу 1980-х годов. Он гласил, что первичной была молекула РНК, а не ДНК. Признание этого факта было связано с наличием у РНК уникальных свойств. Оказалось, что она наделена такой же генетической памятью, как и молекула ДНК. Далее была установлена настоящая вездесущность РНК — стало ясно, что нет организмов, о которых отсутствовала бы РНК, хотя есть множество вирусов, геном которых не содержит ДНК. Также, вопреки устоявшейся догме, утверждавшей, что перенос генетической информации идет в направлении от ДНК к РНК и белку, оказался возможным перепос этой информации от РНК к ДНК при участии фермента, открытого в начале 1970-х годов.
В начале 1980-х годов была установлена способность РНК к саморепродукции в отсутствии белковых ферментов, то есть была открыта се автокаталитическая функция. Это объясняло все нерешаемые ранее вопросы. Таким образом, сегодня считаемся, что протобионт представлял собой молекулу РНК. Древняя РНК была транспортной и совмещала в себе черты как фенотипа, так и генотипа. Иными словами, она могла подвергаться как генетическим преобразованиям, так и естественному отбору. Сегодня уже очевидно, что процесс эволюции шел от РНК к белку, и затем к образованию молекулы ДНК. у которой С-Н связи более прочны, чем С-ОН связи РНК.
Очевидно, что возникновение хиральности, а также первичных молекул РНК не могло произойти в ходе плавного эволюционного развития. Судя по всему, имел место скачок со всеми характерными чертами самоорганизации вещества, об особенностях, которой уже говорилось выше.
В 1990-с годы появился сиге ряд версий, в соответствии с которыми жизнь могла появиться в геотермальных источниках на морском дне, в тонких пленках органического вещества, адсорбированного на поверхности кристаллов пирита или апатитов. Их появление вызвано некоторыми недостатками концепции генобиоза, но они еще не получили достаточного обоснования и развития.
Следующим этапом в процессе появления жизни стало рождение настоящей живой клетки. Сегодня ученые знают о первичной клетке (археклетке) намного больше, чем раньше. Археклетка была первичным живым организмом. У нее, очевидно, была двукслойная оболочка (мембрана), она обладала способностью всасывать через нее протоны, ионы и мелкие молекулы, а ее метаболизм основывался на низкомолекулярных углеродных соединениях. В археклетке существовал клеточный скелет, отвечавший за ее целостность, а также обеспечивавший возможность ее деления. Жизнедеятельность клетки обеспечивалась за счет аденозинтрифосфорной кислоты. Возможно, археклетки были схожи с недавно открытыми археобактериями и представляли собой прото-эукариотную систему, дальнейшая эволюция которых шла как по линии приобретения новых свойств эукариотами, так и по пути их утраты прокариотами. Этот процесс занял несколько миллиардов лет. Считается, что первые прокариоты появились более 4 млрд лет назад. Ими были бактерии и сине-зеленые водоросли — практически бессмертные организмы, жившие в очень сложных условиях. Эукариоты появились около 2,6 млрд лет назад, они уже не были бессмертными, и с их появлением процесс эволюции жизни начал ускоряться.
Существует три гипотезы, объясняющих появление эукариотной клетки.
Согласно аутогенной версии усложнение археклетки шло постепенно по пути приобретения все новых внутренних структур и функций, результатом чего стало появление оформленного ядра.
Существует гипотеза симбиогенеза, которая предполагает, что качественное усложнение клетки и появление в ней ядра произошло в результате внедрения нескольких прокариотных клеток в клетку-хозяина.
Гипотеза споры сводит процесс образования
эукариотной клетки к спорообразованию,
свойственному многим одноклеточным организмам.
Существует возможность торможения процесса
спорообразования в результате мутации,
что привело к образованию прокариотов.
Если же таких мутаций не было, то появились
эукариоты.
ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА: