Методы научного познания. Развитие научного знания. Эволюция вселенной

Автор работы: Пользователь скрыл имя, 20 Сентября 2011 в 21:23, контрольная работа

Описание работы

Процесс научного познания в самом общем виде представляет собой решение различного рода задач, возникающих в ходе практической деятельности. Решение возникающих при этом проблем достигается путем использования особых приемов (методов), позволяющих перейти от того, что уже известно, к новому знанию. Такая система приемов обычно и называется методом. Метод есть совокупность приемов и операций практического и теоретического познания действительности.

Файлы: 1 файл

СЕВЕРО.doc

— 169.50 Кб (Скачать файл)

  Впоследствии  историки науки попытались объединить модели эволюционного и революционного развития науки. В научном познании действует закономерность единства эволюционного и революционного перехода от одной ступени познания к другой. В период эволюционного развития познания происходит процесс совершенствования знаний на основе накопления новых фактов, их систематизации, формирования законов, теорий, разработок новых принципов познания, его методов и средств. Такой эволюционный процесс может привести к существенным противоречиям с господствующей в науке теорией, к замене ее новой теорией, к открытию принципиально новых законов, использованию новых методов и средств. 
 

  СПЕЦИФИКА НАУЧНЫХ РЕВОЛЮЦИЙ

 

  

  Научная революция - это специфическое явление, возникающее только в определенные периоды развития науки как средство разрешения ее внутренних противоречий, изменения ее содержания.

  Революция в науке многогранна. Можно выделить три основные черты научных революций:

  1. Необходимость теоретического синтеза  нового эмпирического материала;

  2. Коренная ломка господствующих  представлений о природе;

  3. Возникновение кризисных ситуаций.

  Для научных революций характерно качественное преобразование теоретических основ  познания на базе крушения и отбрасывания старых идей и теорий, расширение научных  знаний. Но научные революции ведут не к открытию новых фактов, а к радикальному пересмотру теоретических следствий из них, вызывают необходимость теоретического синтеза нового эмпирического материала, коренную ломку, пересмотр содержания старых категорий конкретных, частных наук на базе новых гносеологических предпосылок. Это связано с качественным изменением самого предмета науки, его внутренней логики на базе открытия новых материальных объектов или новых их свойств. i!

  В историческом развитии научного познания можно выделить несколько типов научных революций:

  1. Частная - микрореволюция, затрагивающая  одну область знания;

  2. Комплексная - революция, затрагивающая  ряд областей знания;

  3. Глобальная - всеобщая революция,  радикально меняющая основания науки.

  При определении типа научной революции  необходимо учитывать следующие моменты:

  1. Масштаб научной революции;

  2. Глубину переворота фундаментальных  теорий и законов науки;

  3. Открытие новых фундаментальных  законов, новой общей естественнонаучной теории;

  4. Формирование общей картины мира;

  5. Выработку нового типа мышления;

  6. Исторический период развития  науки;

  7. Сопровождающие научную революцию  социально-экономические преобразования.

  Если  обратиться к истории науки, то подлинно глобальными, фундаментальными можно  назвать лишь две революции: революцию XVI - XVII вв. и научно-техническую революцию XX в.

  Научная революция XVI - XVII вв. представляла собой  революционный скачок в науках, изучающих механическую форму движения материи. Она ознаменовала становление классического естествознания. В тот период главное внимание при объяснении отдельных явлений и процессов природы уделялось наблюдению, поиску очевидных, вытекающих из опыта принципов бытия, на базе которых возможно построение теории. Развивалось механистическое понимание систем природы как вековечных и неизменных. Каждый материальный объект, явление представлялись относительно устойчивыми телами, а процесс развития сводился к перемещению тел в пространстве и во времени.

  В середине XIX в. произошло несколько  комплексных научных революций  одновременно. Среди них особое значение имели революции, связанные с открытиями органической клетки, закона сохранения и превращения энергии, эволюционного учения Ч. Дарвина, периодической системы химических элементов. Сущность этих революций заключалась в рассмотрении предметов и явлений в процессе развития и во взаимной связи.

  Вторая  глобальная революция совершается  в начале XX в. Она связана с  пересмотром исходных идеализации пространства, времени, движения в контексте создания теории относительности и разработки квантовой механики.

  Сегодня, пожалуй, можно говорить об очередной  глобальной революции, в ходе которой  рождается новая постнеклассическая наука. Сегодня научные знания включаются практически во все сферы социальной жизни. Сама научная деятельность тесно связана с революцией в средствах хранения и получения информации. Объектами современного научного познания становятся уникальные системы, характеризующиеся открытостью и саморазвитием.

  Вместе  с включением научных революций  в конечный вариант исторической реконструкции приобретают значение теории прошлого не как некоторые ошибки, зигзаги в сторону от генеральной линии научного развития, а как обладающие своей непреходящей значимостью, особенностью. Рассматривается возникновение нового знания, но без разрушения старого. Прошлое не утрачивает своего своеобразия и не поглощается настоящим.

  Сегодня в истории и методологии науки  на первый план выходят «кейс стадис», которые называют ситуационными исследованиями. Это направление формируется с 70-х годов.

  В работах этого направления прежде всего подчеркивается необходимость остановить внимание на отдельном событии из истории науки, которое произошло в определенном месте и в определенное время. Это прямой антипод кумулятивистских, линейных моделей развития науки.

  В «кейс стадис» ставится задача понять прошлое событие не как вписывающееся в единый ряд развития, не как обладающее какими-то общими с другими событиями чертами, а как неповторимое, невоспроизводимое в других условиях. В работах прежнего типа исследователь стремился изучить как можно больше фактов, чтобы обнаружить в них нечто общее и на этом основании вывести общие закономерности. Теперь он изучает факт как событие - результат многих особенностей развития науки, сходящихся в одной точке с тем, чтобы отличить ее от других.

  Для истории науки - это новый поворот  исследования. Он более характерен для гуманитарных наук. Ведь история  науки больше, чем история любой другой области человеческой жизни, всегда воспринималась как нечто максимально рациональное и упорядоченное.

  В «кейс стадис» элементарное событие не приобщается к некоторому всеобщему, находящемуся вне его, а, наоборот, это всеобщее обнаруживается в нем самом и через общение с другим особенным событием. Но это - в перспективных исследованиях. Сегодняшние исследователи таких проблем пока не ставят.

  Историческая  картина, складывающаяся на базе «кейс  стадис», представляет собой что-то вроде плоскости с возвышающимися на ней холмами и пиками, изображающими события меньшей или большей значимости. Поскольку по ходу истории старые события, как не имеющие значения, не вытесняются новыми, история становится многосубъектной, малособытийной. Между событиями устанавливаются диалогические отношения, речь идет о сосуществовании разных теорий, парадигм.

  План  семинарского занятия (2 часа)

  1. Общие, особенные и частные  методы науки.

  2. Эмпирические и теоретические  методы научного познания.

  3. Три модели исторических реконструкций  науки.

  4. Научные революции и их роль  в развитии науки. 
 
 
 
 
 
 

  ТЕМА 15 ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

  РОЖДЕНИЕ  ВСЕЛЕННОЙ 

  Вопрос  о6 возникновении Вселенной для многих поколений ученых был предметом их научного поиска. В истории науки существовало множество гипотез, отвечающих на этот вопрос. Современное естествознание объясняет возникновение Вселенной с помощью теории Большого взрыва.

  Примерно 15 млрд. лет отделяет нашу эпоху от начала процесса расширения Вселенной, когда вся наблюдаемая нами Вселенная  была сжата в комочек, в миллиарды  раз меньший булавочной головки. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. Более того, нет уверенности, что наука когда-либо познает и объяснит такие состояния. Так что если сингулярность и является начальным простейшим состоянием нашей расширяющейся Вселенной, то наука не располагает о нем информацией.

  В состоянии сингулярности кривизна пространства и времени становится бесконечной, сами эти понятия теряют смысл. Идет не просто замыкание пространственно-временного континуума, как это следует из общей теории относительности, а его полное разрушение. Правда, понятия и выводы общей теории относительности применимы лишь до определенных пределов - масштаба порядка 10-33 см. Дальше идет область, в которой действуют совсем иные законы. Но если считать, что начальная стадия расширения Вселенной является областью, в которой господствуют квантовые процессы, то они должны подчиняться принципу неопределенности Гейзенберга, согласно которому вещество невозможно стянуть в одну точку. Тогда получается, что никакой сингулярности в прошлом не было и вещество в начальном состоянии имело определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно

  в 1061г, сжать до плотности 1094 г/см3, оно заняло бы объем

  около 10-33 см3, что примерно в 1000 раз больше объема ядра атома урана. Его нельзя было бы разглядеть и в электронный микроскоп.

  Причины возникновения такого начального состояния (или сингулярности - эту гипотезу и сегодня поддерживают многие ученые), а также характер пребывания материи в этом состоянии считаются неясными и выходящими за рамки компетенции любой современной физической теории. Неизвестно также, что было до момента взрыва. Долгое время ничего нельзя было сказать и о причинах Большого взрыва, и о переходе к расширению Вселенной, но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы.

  Итак  очевидно, что исходное состояние  перед «началом» не является точкой в математическом смысле, оно обладает свойствами, выходящими за рамки научных представлений сегодняшнего дня. Не вызывает сомнения, что исходное состояние было неустойчивым, породившим взрыв, скачкообразный переход к расширяющейся Вселенной. Это, очевидно, было самое простое состояние из всех, реализовавшихся позднее вплоть до наших дней. В нем было нарушено все, что нам привычно: формы материи, законы, управляющие их поведением, пространственно-временной континуум. Такое состояние можно назвать хаосом, из которого в последующем развитии системы шаг за шагом формировался порядок.

  Хаос  оказался неустойчивым, это послужило  исходным толчком для последующего развития Вселенной.

  Еще Демокрит утверждал, что мир состоит из атомов и пустоты - абсолютно однородного пространства, разделяющего атомы и тела, в которые они соединяются. Современная наука на новом уровне интерпретирует атомизм, и вносит совершенно иной смысл в понятие среды, разделяющей частицы. Эта среда отнюдь не является абсолютной пустотой, она вполне материальна и обладает весьма своеобразными свойствами, пока еще мало изученными. По традиции, эта среда, неотделимая от вещества, продолжает называться пустотой, вакуумом.

  Вакуум - это пространство, в котором отсутствуют реальные частицы и выполняется условие минимума плотности энергии в данном объеме. Казалось бы, раз нет реальных частиц, то пространство пусто, в нем не может содержаться энергия, даже минимальная. Но это представление пришло к нам из классической физики. Квантовая же теория, опираясь на принцип неопределенности Гейзенберга, опровергает его. Мы помним, что применительно к теории поля принцип неопределенности утверждает невозможность одновременного точного определения напряженности поля и числа частиц. Раз число частиц равно нулю, то напряженность поля не может равняться нулю, иначе оба параметра будут известны, и принцип неопределенности будет нарушен. Напряженность поля в вакууме может существовать лишь в форме флуктуационных колебаний около нулевого значения. Соответствующая этим колебаниям энергия будет минимально возможной.

Информация о работе Методы научного познания. Развитие научного знания. Эволюция вселенной