Лекции по "Концепция современного естествознания"

Автор работы: Пользователь скрыл имя, 22 Февраля 2016 в 15:37, курс лекций

Описание работы

ЛЕКЦИЯ 1. ЕСТЕСТВОЗНАНИЕ В СИСТЕМЕ НАУКИ И КУЛЬТУРЫ. НАУЧНЫЙ МЕТОД.ЭМПИРИЧЕСКИЙ И ТЕОРЕТИЧЕСКИЙ УРОВНИ НАУЧНОГО ПОЗНАНИЯ.

Термин наука по своему логическому объему шире термина «естествознание». Термин«естествознание» получил широкое распространение в языке общения исследователей природы в XVII в. Содержание терминов изменялось на основе осмысления исторического развития науки в целом. Нанекоторых исторических этапах развития науки под естествознанием понимались все знания, имеющие научное содержание.

Файлы: 1 файл

концепции современных естесвознаний.doc

— 772.50 Кб (Скачать файл)

Синергетика выступает сегодня как междисциплинарное научное направление, ориентированное на поиск общих законов эволюции и механизмов развития природного и социального мира. Синергетическая парадигма, широко внедрившаяся в науку и культуру, задает новое мировидение, отвергая однолинейный плоский детерминизм, показывая, что нет мира однозначного определения, а есть многозначная ветвящаяся древовидная крона возможных путей развития Космоса, биосферы и истории.

Важное философско-методологическое и мировоззренческое значение для естественнонаучной и гуманитарной культуры имеют ключевые идеи синергетики о том, что:

1.  сложноорганизованным системам нельзя навязывать пути их развития;

2.  для них, как правило, существуют несколько альтернативных путей развития, а значит возможность выбора наиболее оптимальных из них;

3.  хаос может выступать в качестве созидающего начала, конструктивного механизма эволюции;

4.  в особых состояниях неустойчивой социальной среды действия каждого отдельного человека могут влиять на макросоциальные процессы;

5.  зная тенденции самоорганизации системы, можно миновать многие зигзаги эволюции, ускорить ее;

6.  многое в развитии мира свершается « вдруг», как бы непроизвольно, подобно мутациям в биологической эволюции.

Отметим, что формирование синергетики как общенаучного направления не завершено и еще продолжается. До сих пор не получил адекватного решения главный вопрос – об источниках самоорганизации. А без этого само понятие самоорганизации остается недостаточно осмысленным и условным, имеющим лишь рабочее значение. Но, несмотря на это, у синергетики есть будущее, при чем, по словам Г. Хакена, «для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин».

ЛЕКЦИЯ 6. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ.  

 

Во второй половине XX в., с созданием ускорителей заряженных частиц, в физике получены поистине удивительные результаты. Было открыто множество новых субатомных частиц. Новые частицы обычно открывают, наблюдая за реакцией рассеяния уже известных частиц. Для этого в ускорителях частицы сталкивают с как можно большей энергией, а затем исследуют продукты их взаимодействия.

Мир субатомных частиц поистине многообразен. К уже известным частицам, из которых построены атомы и молекулы (протоны, нейтроны, электроны), добавилось множество других: мюонов, мезонов, гиперонов, античастиц, различных нейтральных частиц и др. Среди субатомных частиц обнаружились и такие частицы, которые в окружающем нас веществе практически не встречаются, — резонансы. Время их жизни — мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы.

В 1950 – 1970-е гг. физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Если в конце 1940-х гг. было известно 15 элементарных частиц, то в конце 1970-х — уже около 400. Совершенно непонятно, для чего столько частиц. Являются ли элементарные частицы случайными осколками материи или, возможно, за их взаимодействиями скрывается некоторый порядок? Развитие физики в последующие десятилетия показало: миру субатомных частиц присущ глубокий структурный порядок. В основе этого порядка — фундаментальные физические взаимодействия.

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций, и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырем фундаментальным взаимодействиям.

В порядке возрастания интенсивности эти фундаментальные взаимодействия представляются следующим образом: гравитационное взаимодействие; слабое взаимодействие; электромагнитное взаимодействие; сильное взаимодействие. Именно эти взаимодействия в конечном счете отвечают за все изменения в природе, именно они являются источником всех преобразований материальных тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия.

Еще в середине XIX в. с созданием теории электромагнитного поля выяснилось, что передача взаимодействия осуществляется не мгновенно (принцип дальнодействия), а с конечной скоростью посредством некоторого посредника — непрерывно распределенного в пространстве поля (принцип близкодействия). Скорость распространения электромагнитного поля равна скорости света.

Однако уже в первой четверти XX в., с появлением квантовой механики значительно углубилось представление о физическом поле. В свете квантово-волнового дуализма любое поле является не непрерывным, а имеет дискретную структуру, ему должны соответствовать определенные частицы, кванты этого поля. Например, квантами электромагнитного поля являются фотоны. Когда заряженные частицы обмениваются между собой фотонами, это приводит к появлению электромагнитного поля. Фотоны и являются переносчиками электромагнитного взаимодействия.

Аналогичным образом и другие виды фундаментальных взаимодействий имеют свои поля и соответствующие частицы, переносящие это полевое взаимодействие. Изучение конкретных свойств, закономерностей этих полей и частиц — носителей фундаментальных взаимодействий — главная задача современной физики. 

 

Гравитационное взаимодействие

Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в XVII в. ньютоновская теория гравитации (закон всемирного тяготения) позволила впервые осознать истинную роль гравитации как силы природы. Релятивистской теорией гравитации является ОТО, которая в области слабых гравитационных полей переходит в теорию тяготения Ньютона.

Гравитация обладает рядом особенностей, резко отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность. Гравитационное взаимодействие в 1039 раз меньше силы взаимодействия электрических зарядов. Поэтому в описании взаимодействий элементарных частиц оно обычно не учитывается. В микромире гравитация ничтожна.

Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселенной.

Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной? Все дело во второй удивительной черте гравитации — ее универсальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притягивают нас.

Кроме того, гравитация — дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось.

Согласно общим теоретико-физическим представлениям гравитационное взаимодействие должно подчиняться квантовым законам так же, как и электромагнитное (иначе возникают множественные противоречия в основаниях современной физики, в том числе связанные с принципом неопределенности и др.). В таком случае гравитационному взаимодействию должно соответствовать поле с квантом гравитации — гравитоном (нейтральная частица с нулевой массой покоя и спином 2). Квантовая гравитация приводит к появлению представления о дискретности свойств пространства-времени, понятиям элементарной длины, кванта пространства r ≈ 10-33см, и элементарного временного интервала, кванта времени t ≈ 10-43 с. Последовательная квантовая теория гравитации пока не создана.

К сожалению, возможности современной экспериментальной гравитационной физики и астрономии не позволяют зафиксировать квантовые эффекты гравитации в силу их чрезвычайной слабости. Тем неменее явления, в которых проявляются квантовые свойства гравитации, по-видимому, существуют. Они проявляют себя в очень сильных гравитационных полях, где происходят квантовые процессы рождения частиц (точка сингулярности, начальные моменты возникновения Вселенной, гравитационный коллапс, черные дыры.

Электромагнитное взаимодействие

По величине электрические силы намного превосходят гравитационные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). Но долгое время электрические и магнитные явления изучались независимо друг от друга. И только в середине XIX в. Дж. К. Максвелл объединил учения об электричестве и магнетизме в единой теории электромагнитного поля. А существование электрона (единицы электрического заряда) было твердо установлено в 1890-е гг. Но не все элементарные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. Этим электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.

Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные — притягиваются. Но в отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами — северный полюс и южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс — монополь. Но все они заканчивались неудачей. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые современные теории допускают возможность существования магнитного монополя.

Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц неотрывно от этих частиц. Но при ускоренном движении частиц электромагнитное поле «отрывается» от них и участвует в независимой форме электромагнитных волн. При этом радиоволны (103 — 1012 Гц), инфракрасное излучение (1012 — 3,7 1014 Гц), видимый свет (3,7 1014 — 7,5 1014 Гц), ультрафиолетовое излучение (7,5 1014 — 3 1017 Гц), рентгеновское излучение (3 1017 — 3 1020 Гц) и гамма-излучение (3 102 — 1023 Гц) представляют собой электромагнитные волны различной частоты. Причем между соседними диапазонами резких границ нет (длина электромагнитной волны с ее частотой связана соотношением: λ = c/v, где λ — длина волны, v — частота, с — скорость света).

Электромагнитное взаимодействие (как и гравитация) является дальнодействующим, оно ощутимо на больших расстояниях от источника. Как и гравитация, оно подчиняется закону обратных квадратов. Электромагнитное взаимодействие проявляется на всех уровнях материи — в мегамире, макромире и микромире.

Электромагнитное поле Земли простирается далеко в космическое пространство, мощное поле Солнца заполняет всю Солнечную систему; существуют и галактические электромагнитные поля. В то же время электромагнитное взаимодействие определяет структуру атомов и молекул (положительно заряженное ядро и отрицательно заряженные электроны). Оно отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных): силы упругости, трения, поверхностного натяжения, им определяются свойства агрегатных состояний вещества, химических превращений, оптические явления, явление ионизации, многие реакции в мире элементарных частиц и др. 

 

Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц. Поэтому с его проявлением столкнулись при открытии радиоактивности и исследовании бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Создавалось впечатление, что в этом распаде как будто нарушается закон сохранения энергии, что часть энергии куда-то исчезает. Чтобы «спасти» закон сохранения энергии, В. Паули предположил, что при бета-распаде вместе с электроном вылетает, унося с собой недостающую энергию, еще одна частица. Она — нейтральная и обладает необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку «нейтрино».

Но предсказание нейтрино — это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, здесь оставалось много загадочного. Дело в том, что электроны и нейтрино испускались нестабильными ядрами, но было известно, что внутри ядер нет таких частиц. Как же они возникали? Выяснилось, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино. Какие же силы вызывают такой распад? Анализ показал, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой, которой соответствует некоторое «слабое взаимодействие».

Информация о работе Лекции по "Концепция современного естествознания"