Автор работы: Пользователь скрыл имя, 22 Февраля 2016 в 15:37, курс лекций
ЛЕКЦИЯ 1. ЕСТЕСТВОЗНАНИЕ В СИСТЕМЕ НАУКИ И КУЛЬТУРЫ. НАУЧНЫЙ МЕТОД.ЭМПИРИЧЕСКИЙ И ТЕОРЕТИЧЕСКИЙ УРОВНИ НАУЧНОГО ПОЗНАНИЯ.
Термин наука по своему логическому объему шире термина «естествознание». Термин«естествознание» получил широкое распространение в языке общения исследователей природы в XVII в. Содержание терминов изменялось на основе осмысления исторического развития науки в целом. Нанекоторых исторических этапах развития науки под естествознанием понимались все знания, имеющие научное содержание.
2. Общественное сознание
3. Общественное сознание
4. Развитие общества есть
5. Реальная история есть
II. Общенаучные подходы и методы исследования.
Они выступают в качестве своеобразной «промежуточной методологии» между философией и фундаментальными теоретико-методологическими положениями специальных наук. К общенаучным понятиям чаще всего относят такие понятия, как «информация», «модель», «структура», «функция», «система», «элемент», «оптимальность», «вероятность» и др.
Характерными чертами общенаучных понятий являются:
· «сплавленность» в их содержании отдельных свойств, признаков, понятий ряда частных наук и философских категории
· возможность (в отличие от последних) их формализации, уточнения средствами математической теории символической логики
Если философские категории воплощают в себе предельно возможную степень общности — конкретно-всеобщее, то для общенаучных понятий присуще большей частью абстрактно-общее (одинаковое).
На основе общенаучных понятий и концепций формулируются соответствующие методы и принципы познания, которые и обеспечивают связь и оптимальное взаимодействие философии со специально-научным знанием и его методами. Особенно (в последнее время)синергетика — теория самоорганизации и развития открытых целостных систем любо природы — природных, социальных, когнитивных (познавательных). Среди основных понятий синергетики такие понятия, как «порядок», «хаос», «нелинейность», «неопределенность», «нестабильность», «диссипативные структуры», «бифуркация» и др. Синергетические понятия тесно связаны и переплетаются с рядом философских категорий, особенно таких как «бытие», «развитие», «становление», «время», «целое», «случайность», «возможность» и др.
Важная роль общенаучных подходов состоит
в том, что в силу своего «промежуточного
характера», они опосредствуют взаимопереход
III. Дисциплинарные методы — система приемов, применяемых в той или иной научной дисциплине, входящей в какую-нибудь отрасль науки или возникшей на стыках наук. Каждая фундаментальная наука представляет собой комплекс дисциплин, которые имеют свой специфической предмет и свои своеобразные методы исследования.
IV. Методы междисциплинарного
Таким образом, методология не может быть сведена к какому-то одному, даже «очень важному методу». Ученый никогда не должен полагаться на какое-то единственное учение, никогда не должен ограничивать методы своего мышления одной-единственной философией.
ЛЕКЦИЯ 2. РАЗВИТИЕ НАУЧНЫХ ИССЛЕДОВАТЕЛЬСКИХ ПРОГРАММ И КАРТИН МИРА.
Со времен Ньютона и Галилея естествознание выработало особое, теоретическое звено, объединяющее теоретические наработки частных наук, в нем коренятся глубинные связи различных областей естествознания. Общее знание о природе фиксируется в виде естественнонаучной картины мира (ЕНКМ), часто для удобства называемой «научной картиной мира» (НКМ).
Научная картина мира – это особый слой теоретического знания и научного понимания внешнего мира, это не случайный, а систематизированный набор основных научных идей. Возникновение научной картины мира стало необходимым на определенном уровне развития научного познания, в условиях углубляющегося разделения труда в сфере производства научных знаний, распадения реального единства знаний на автономные специализированные научные дисциплины. Когда вследствие этого исчезла действительная целостность взгляда на мир, возникла потребность логического конструирования этой целостности, появилась особая категориальная фиксация единой картины мира, в которой путем синтеза главных онтологических допущений из фундаментальных научных теорий строилось и задавалось обобщенное видение исследуемой реальности, соответствующее конкретно-историческому этапу развития науки.
Естественнонаучная картина мира (ЕНКМ)
складывается из существующих научных
представлений эпохи о строении и развитии
природы. Кроме того, отдельные естественные науки
создают собственные картины исследуемой
ими реальности. Их называют частнонаучными (ЧНКМ)
История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI - XVII вв., было связано долгое время с развитием физики. Именно физика была и остается сегодня наиболее развитой и систематизированной естественной наукой. Поэтому, когда возникло мировоззрение европейской цивилизации Нового времени, складывалась классическая картина мира, естественным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX веке смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.
Понятие “физическая картина мира” употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира:
ü обобщает все ранее полученные знания о природе;
ü вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы (которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется).
Первая физическая картина мира - механическая картина мира (МКМ) складывается в результате научной революции к. XVI-н. XVII вв., оформляется как целостное образование к ХVIII в., и господствует на протяжении XIX в., на основе работ Г. Галилея и П. Гассенди, восстановивших атомизм древних философов, исследований Р. Декарта и обобщений И. Ньютона, завершивших построение новой картины мира, сформулировавших основные идеи, понятия и принципы.
Основу механической картины мира составил атомизм, который весь мир, включая и человека, понимал как совокупность огромного числа неделимых частиц - атомов, перемещающихся в пространстве и времени.
Ключевым понятием механистической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Таким образом, впервые МКМ дает научное обоснование понятию движения материи. Движение трактуется как вечное и естественное состояние тел, как основное их состояние, что прямо противоположно аристотелевским представлениям, в которых движение рассматривалось как привнесенное извне. Вместе с тем в классической механике абсолютизируется механическое движение (как перемещение тел в пространстве), к которому пытались свести все многообразие видов движения в природе.
Классическая физика выработала своеобразное понимание материи, сведя ее к вещественной, или весовой (массе). Масса является мерой инертности, при этом, она остается неизменной при любых условиях движения и при любых скоростях. Универсальным свойством тел является тяготение.
Решая проблемы взаимодействия тел, Ньютон предложил принцип дальнодействия. Согласно этому принципу, взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных посредников. Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и времени. Пространство представлялось безграничным “черным ящиком”, вмещающим все тела в мире, но если бы эти тела вдруг исчезли, пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и время, также существующее абсолютно независимо от материи. По Ньютону, пространство – это абсолютное неподвижное однородное изотропное бесконечное вместилище всех тел (то есть пустота). А время – это чистая однородная равномерная и непрерывная длительность процессов. Абсолютность времени выражается его одинаковостью во всех точках Вселенной.
В механической картине мира любые события жестко предопределялись законами механики. Случайность в принципе исключалась из этой картины мира. Жизнь и разум в механической картине мира не обладали никакой качественной спецификой. Поэтому присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать, как ни в чем не бывало. Иначе говоря, во взглядах естествоиспытателей господствовал механистический детерминизм – учение о всеобщей предопределенности и обусловленности явлений природы. Все механические процессы в классических представлениях подчинены принципу строгого детерминизма, т.е. возможно точное предсказание поведения механической системы, если известно ее предыдущее состояние.
Электромагнитная картина мира или электродинамическая картина мира (ЭДКМ).
Явления электричества и магнетизма были известны людям давно. Древние греки интересовались природой электричества, натирая янтарную палочку кошачьим мехом («электрон» – в переводе с греческого «янтарь»). В древнем Китае был изобретен компас, хотя использовались куски руды магнитного железняка в магических мистериях. Научное осмысление этих природных явлений началось в классическом естествознании. Одним из замечательных физиков-самоучек, был Майкл Фарадей (1791–1867), он не имел систематического университетского образования, но был хорошо знаком с математикой. М. Фарадей наметил эскиз будущей теории электромагнитного поля. В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Он сделал вывод, что не только тела должны быть подвергнуты исследованию, но и среда, которая их окружает. Среда у Фарадея становится специальным предметом изучения, как носитель принципиально важных процессов, передающих взаимодействие между предметами. Первоначально Фарадей предлагает понятие магнитных силовых линий, но с 1852 года вводит понятие поля. Электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпал вопрос о построении механической модели эфира, несовпадении механических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Одним из первых идеи Фарадея оценил Д. Максвелл (1831–1879). При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира, а его теория электромагнитного поля – это лишь математическое оформление идей Фарадея. Открытие Максвелла сравнимо по научной значимости с открытием всемирного тяготения Ньютона. Труды Ньютона привели к введению понятия всеобщего закона тяготения, труды Максвелла – к введению понятия электромагнитного поля и электромагнитной природы света. Для физики середины XIX в. поле стало новой фундаментальной физической реальностью, которое не сводится ни к материальным точкам, ни к веществу, ни к атомам. К концу XIX в. взгляды на материю менялись кардинально:
ü совокупность неделимых атомов переставала быть конечным пределом делимости материи, в качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами - электрическими зарядами и волновыми движениями в нем.
ü движение понималось не только как простое механическое перемещение; первичным по отношению к этой форме движения становилось распространение колебаний в поле, которое описывалось не законами механики, а законами электродинамики.
ü ньютоновская концепция абсолютного пространства и времени не подходила к полевым представлениям, т.к. поле является абсолютно непрерывной материей, пустого пространства просто нет.
ü время неразрывно связано с процессами, происходящими в поле.
ü пространство и время перестали быть самостоятельными, независимыми от материи. Понимание пространства и времени как абсолютных уступило место реляционной (относительной) концепции пространства и времени.
Не менялось в электромагнитной картине
мира представление о месте и роли человека
во Вселенной. Его появление считалось
лишь капризом природы. Теория Максвелла выдвинула
один единственный новый принцип – принцип
близкодействия (силовое действие предается
от точки к точке), в остальном же просто
вышла за рамки МКМ, обнаружив ее очевидные
противоречия и слабые стороны. Новая
электромагнитная картина мира объяснила
большой круг явлений, непонятных с точки
зрения прежней механистической картины
мира. Она глубже вскрыла материальное
единство мира, поскольку электричество
и магнетизм объяснялись на основе одних
и тех же законов. К концу XIX в. накапливалось
все больше необъяснимых несоответствий
теории и опыта. Одни были обусловлены недостроенностью
Последовательное применение теории
Максвелла к другим движущимся средам
приводило к выводам о неабсолютности пространства
и времени. Однако, убежденность в их абсолютности
была так велика, что ученые удивлялись своим выводами, называли их
странными и отказывались от них. Именно
так поступили К. Лоренц и А. Пуанкаре,
чьи работы завершают доэйнштейновский
Квантово-релятивистская физическая
картина мира. Принимая законы электродинамики в качестве основных законов физической
реальности, А. Эйнштейн (1879–1955) ввел в
электромагнитную картину мира идею относительности
пространства и времени и тем самым устранил
противоречие между пониманием материи
как определенного вида поля и ньютоновскими
Информация о работе Лекции по "Концепция современного естествознания"