Феноменологические модели строения вещества

Автор работы: Пользователь скрыл имя, 17 Декабря 2011 в 00:49, реферат

Описание работы

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

Содержание работы

I. Введение. 3

Молекулярно-кинетическая теория строения и тепловых 4
свойств вещества.

2. Распределение Максвелла. 6
3. Уравнение состояния идеального газа 8

4. Революция в термодинамике 9

5. Обычная термодинамика: резюме 9

6. Термодинамика "обычных" систем. 10
7. Что такое термодинамически аномальные системы? 11
8. Режим сильной связи в конденсированном веществе. 12
9. Идея Тсаллиса. 12
10. Развиваем теорию. 14


II. Заключение. 14

Список использованной литературы

Файлы: 1 файл

естествознание основное.doc

— 167.00 Кб (Скачать файл)

    

САНКТ-ПЕТЕРБУРГСКИЙ  ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ

СЕРВИСА И ЭКОНОМИКИ 
 
 
 
 
 
 

РЕФЕРАТ 
 
 
 

ПО  ДИСЦИПЛИНЕ  «Концепции современного естествознания»

ТЕМА  «Феноменологические  модели строения вещества» 

СТУДЕНТКИ 1 КУРСА 604 ГРУППЫ 
 
 
 
 
 
 
 
 
 
 

ПРОВЕРИЛ___________________ 

«_____»___________________2008г. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Санкт-Петербург

2008г. 
 

Оглавление 
 
 

I. Введение.                                                                                                  3 
 

  1. Молекулярно-кинетическая теория строения и тепловых            4

        свойств вещества.

                                               

     2. Распределение Максвелла.                                                               6 

     3. Уравнение состояния идеального газа                                             8

                                                                      

    4. Революция в термодинамике                                                             9

                                                               

     5. Обычная термодинамика: резюме                                                    9

                     

     6. Термодинамика "обычных" систем.                                               10 

     7. Что такое термодинамически аномальные системы?                   11 

     8. Режим сильной связи в конденсированном веществе.                 12                                  

     9. Идея Тсаллиса.                                                                                12 

    10. Развиваем теорию.                                                                         14 
 
 

II. Заключение.                                                                                           14 
 

Список использованной литературы                                                        17 
 
 
 
 
 
 
 
 
 
 

          Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов»

              Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20—30° С при смене времени года меняет все вокруг нас. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Это было одним из величавших открытий, сделанных на заре развития человечества. История развития представлений о природе тепловых явлений — пример того, каким сложным и противоречивым путем постигают научную истину.

            Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются.

           Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

            Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

             Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура .Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

            Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.

             Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

                 С помощью корпускулярной теории теплоты не удалось получить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц — их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие дала простая и наглядная теория теплорода.

              К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совершении работы паровыми машинами пар охлаждается и теплота исчезает.

             В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.

              Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822—1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844—1906) и другие ученые. 
 

Молекулярно-кинетическая теория строения и тепловых свойств  вещества. 

             Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй — молекулярной физики.

           Одновременно с созданием термодинамических методов исследования развивались и корпускулярные представления тепловых свойств макросистем, в соответствии с которыми ставилась задача объяснения всех процессов, происходящих с макросистемами, на основе предположения о том, что вещество состоит из атомов или молекул, движение которых подчиняется законам Ньютона.

             К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул — молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.

             Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц систем, особенностями их движения и усредненными значениями кинетических и динамических характеристик этих частиц (скорости, энергии, давления и т. д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул. В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.

            В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три положения:

- любое тело — твердое, жидкое или газообразное — состоит из большого числа весьма   малых частиц — молекул (атомы можно рассматривать как одноатомные молекулы);

- молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении;

- интенсивность движения молекул зависит от температуры вещества.

            Эти утверждения носят настолько общий характер, что невозможно указать небольшой набор каких-либо конкретных экспериментов, полностью их доказывающих.

            В пользу первого положения прежде всего свидетельствуют сами факты существования таких разделов естествознания, как химия и молекулярная физика, в которых на основе гипотезы о молекулярном строении вещества делается множество конкретных выводов, прекрасно согласующихся с экспериментом. В физике имеется множество косвенных методов, позволяющих определять форму, размеры и расположение молекул, данные этих методов согласуются друг с другом. Созданный сравнительно недавно туннельный микроскоп позволяет визуализировать отдельные атомы и молекулы, расположенные на гладкой поверхности проводящего кристалла.

           Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а такое же нагревание металлического стержня заметно не влияет на него. Такое различное действие нагревания связано с различием во внутреннем строении этих веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование.

             Свойства и поведение макросистем, начиная от разреженных газов верхних слоев атмосферы и кончая твердыми телами на Земле, а также сверхтвердыми ядрами планет и звезд, определяются движением и взаимодействием друг с другом частиц, из которых состоят все тела: молекул, атомов, элементарных частиц.

               Предположение о хаотическом движении молекул впервые было высказано ботаником Броуном, наблюдавшим незначительные перемещения частичек пыльцы цветка, помещенных в жидкость. Методами своей науки Броун убедился в ошибочности своего исходного предположения, что частицы пыльцы являются живыми существами, обладающими способностью самостоятельного движения, и отнес причину их случайных блужданий к передаче импульса в результате случайных ударов со стороны хаотически перемещающихся молекул. Движением молекул объясняется явления диффузии (постепенного перемешивания различающихся веществ вблизи границы их соприкосновения), теплопередачи (постепенное выравнивание температур при соприкосновении горячих и холодных тел), распространения звука и др. В опыте Штерна была осуществлена непосредственная демонстрация движения молекул горячих паров металла и получена информация о скоростях этого движения.

Информация о работе Феноменологические модели строения вещества