Строение и функции клеток

Автор работы: Пользователь скрыл имя, 28 Февраля 2011 в 18:20, доклад

Описание работы

Почти все организмы построены из обособленных единиц, называемых клетками. Каждая клетка представляет собой самостоятельную функциональную единицу, а протекающие в организме процессы слагаются из совокупности координированных функций его клеток. Клетки могут быть весьма различны по своим размерам, форме и функции. У некоторых мельчайших организмов все тело состоит из одной клетки. Другие организмы, например человек или дуб, построены из многих миллиардов клеток, пригнанных друг к другу.

Содержание работы

ЖИВАЯ КЛЕТКА……………………………………………..3
ОСНОВНЫЕ ОСОБЕННОСТИ КЛЕТКИ…………………6
ОБМЕН МАТЕРИАЛАМИ МЕЖДУ КЛЕТКОЙ И ОКРУЖАЮЩЕЙ СРЕДОЙ……………………………………8
КЛЕТОЧНОЕ ЯДРО……………………………………………15
ЦЕНТРИОЛИ И МИТОТИЧЕСКОЕ ВЕРЕТЕНО. ……………19
МИТОХОНДРИИ…………………………………………………21
ХЛОРОПЛАСТЫ…………………………………………………24
РИБОСОМЫ И ДРУГИЕ ОРГАНЕЛЛЫ ЦИТОПЛАЗМЫ…25
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………....29

Файлы: 1 файл

СТРОЕНИЕ И ФУНКЦИИ КЛЕТок.doc

— 497.00 Кб (Скачать файл)

    

    ХЛОРОПЛАСТЫ

    В клетках большинства растений имеются  пластиды — небольшие тельца, в которых происходит синтез или накопление органических веществ. Наиболее важные пластиды — хлоропласты — содержат зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Типичные хлоропласты — это дисковидные образования диаметром около 5 мкм и толщиной 1 мкм. При изучении в электронном микроскопе видно, что хлоропласты построены из мембран, плотно уложенных параллельно друг другу. Каждая клетка содержит от 20 до 100 хлоропластов, которые могут расти и делиться, образуя новые, дочерние хлоропласты. Внутри каждого хлоропласта находится множество мелких телец, называемых гранами; эти тельца содержат хлорофилл.

    Хлоропласт  — это не просто мешочек, наполненный хлорофиллом. Самая способность этого пигмента улавливать энергию света зависит от его упаковки в гранах. Слой молекул хлорофилла и слой фосфолипидных молекул лежат здесь между слоями белка. Благодаря этому молекулы хлорофилла распределены по большой площади; кроме того, слоистая структура, возможно, облегчает перенос энергии с одной молекулы на другую — соседнюю с ней — во время фотосинтеза. Материал, в который погружены граны, называется стромой. Многочисленные граны одного хлоропласта соединены между собой листками мембран, проходящих через строму.

    Другой  тип пластид — это бесцветные лейкопласты, которые служат центрами накопления крахмала и других веществ. Пластиды третьего типа — хромопласты — содержат различные пигменты, обусловливающие окраску цветков и плодов. 
 

    РИБОСОМЫ  И ДРУГИЕ ОРГАНЕЛЛЫ  ЦИТОПЛАЗМЫ.

    Клетки  с особенно активным синтезом секретируемых белков (так называемый «синтез на экспорт»), например клетки поджелудочной железы, заполнены мембранами эндоплазматической сети, образующими сложный лабиринт; в других клетках таких мембран может быть мало. Эндоплазматическая сеть бывает двух типов: агранулярная, или гладкая, состоящая из одних только мембран, и гранулярная, или шероховатая, к мембранам которой прикреплено множество рибосом. Рибосомы — это мелкие нуклеопротеидные частицы, на которых происходит синтез белка; они могут быть прикреплены к мембранам эндоплазматической сети или свободно взвешены в основном веществе цитоплазмы. Одна и та же клетка может содержать как гранулярную, так и гладкую эндоплазматическую сеть. Функция гладкой сети неясна; возможно, что она участвует в секреторной деятельности клетки. Плотно упакованные мембраны эндоплазматической сети  иногда  образуют  канальцы  диаметром около 50—100 нм. В других частях клетки промежутки между мембранами могут быть расширены, так что получаются уплощенные мешочки, называемые цистернами. Все эти мембраны разделяют цитоплазму на множество относительно обособленных отсеков, в которых, возможно, протекают различные химические реакции. Эндоплазматическая сеть служит также для переноса субстратов этих реакций и их продуктов через цитоплазму к наружной поверхности клетки и к ядру.

    После осаждения митохондрий из гомогенизированных клеток путем дальнейшего центрифугирования можно осадить гетерогенную группу более мелких частиц, так называемых микросом; для этого нужна центробежная сила, примерно в 100 000 раз превышающая силу тяжести. Из этой микросомной фракции с помощью специальных методов (обработка соответствующими детергентами) можно выделить рибосомы. Изолированные рибосомы способны синтезировать белки in vitro, если снабдить их «инструкциями» в форме информационной РНК, набором нужных аминокислот, источником энергии, некоторыми ферментами и необходимыми транспортными РНК. Рибосомы вездесущи: их можно найти в бактериальных, растительных и животных клетках всех типов. Они содержат РНК и белок и состоят из двух субъединиц почти сферической формы, при соединении которых образуется активная структура, способная синтезировать белки. Сами рибосомы синтезируются в ядре и переходят в цитоплазму, где и выполняют свою  функцию.

    Во  многих клетках эффективными функциональными единицами, синтезирующими белок, служат группы из 5—6 рибосом, называемые полирибосомами, или полисомами. Принято считать, что бактериальная клетка, например клетка кишечной палочки, содержит около 6000 рибосом, а ретикулоцит кролика — около 100 000. Рибосомы всех организмов, от бактерий до млекопитающих, поразительно однородны по величине, строению и химическому составу. Они содержат примерно равные количества белка и РНК и совсем или почти совсем не содержат липидов. Белок рибосом отличается довольно высоким содержанием основных аминокислот.

    Одна  из структурных субъединиц рибосомы имеет молекулярную массу около 1 300 000, а другая — около 600 000. Белковые компоненты рибосом из различных клеток удивительно сходны по аминокислотному составу; однако нуклеотидный состав рибосомной РНК у разных организмов значительно варьирует.

    Помимо  рибосом, участвующих в синтезе  полипептидных цепей, микросомная фракция содержит ряд других, не столь характерных частиц, в которых находятся ферменты, связанные с метаболизмом других химических соединений.

    Комплекс  Гольджи — еще один компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых сперматозоидов и эритроцитов,— представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно комплекс Гольджи расположен около ядра и окружает центриоли. Функция его еще не вполне ясна, но ему давно уже приписывают важную роль в секреции некоторых клеточных продуктов. Судя по некоторым данным, белки, синтезируемые в цистернах эндоплазматической сети, как бы расфасовываются в небольшие пакеты из ее мембран и направляются к комплексу Гольджи; здесь происходит переупаковка их в более крупные пузырьки, образованные из мембран этого комплекса. В этих новых «пакетах» они транспортируются к плазматической мембране, которая затем сливается с мембраной пузырька, так что, когда пузырек вскрывается, содержимое его выходит из клетки наружу. В электронном микроскопе видно, что комплекс Гольджи состоит из групп параллельно расположенных мембран, лишенных гранул; в отдельных участках промежутки между мембранами могут быть растянуты, образуя небольшие пузырьки или вакуоли, наполненные каким-то материалом. По мнению некоторых цитологов, комплекс Гольджи служит для временного хранения веществ, вырабатываемых в эндоплазматической сети, а канальцы его соединены с плазматической мембраной, что облегчает секрецию этих клеточных продуктов.

    Возможно, что в растительных клетках  комплекс Гольджи секретирует целлюлозу для клеточных стенок. Он обычно имеет вид обособленных, разбросанных по всей клетке телец, каждое из которых состоит из пачки уплощенных пузырьков, слегка растянутых по краям.

    Лизосомы  — группа внутриклеточных органелл, встречающихся в животных клетках,— сходны по величине с митохондриями, но несколько менее плотны; они представляют собой ограниченные мембраной тельца, которые содержат   разнообразные   ферменты, способные   гидролизовать макромолекулярные компоненты клетки — белки, полисахариды и нуклеиновые кислоты. В неповрежденных клетках эти ферменты, находясь внутри лизосом, изолированы от остальной клетки, по-видимому, для того, чтобы предотвратить переваривание ими клеточного содержимого. При разрыве лизосомной мембраны они высвобождаются; этим можно, по крайней мере частично, объяснить лизис мертвых или умирающих клеток и резорбцию (рассасывание) клеток, происходящую, например, в хвосте головастика во время метаморфоза. Так как лизосомы, разрываясь, освобождают заключенные в них ферменты, способные расщеплять главные химические компоненты клетки, де Дюв назвал их «несессером самоубийцы».

    Кроме этих живых элементов, цитоплазма может содержать вакуоли — полости, наполненные водянистой жидкостью и отделенные от остальной цитоплазмы вакуолярной мембраной. Вакуоли весьма обычны в клетках растений и низших животных, но редко встречаются в клетках высших животных. Большинство простейших (Protozoa) имеет пищеварительные вакуоли, которые содержат пищу, находящуюся в процессе переваривания, и сократительные вакуоли, «выкачивающие» из клетки избыточную воду. Наконец, цитоплазма может содержать гранулы резервного крахмала или белка, а также капельки масла.

    Существует  три основных структурных различия между животными и растительными клетками: 1) животные клетки в отличие от клеток высших растений имеют центриоль; 2) растительные клетки в отличие от животных клеток содержат в своей цитоплазме пластиды и 3). клетки растений обладают жесткой клеточной стенкой из целлюлозы, препятствующей изменению их положения или формы, тогда как животные клетки обычно имеют лишь тонкую плазматическую мембрану и благодаря этому способны двигаться и изменять свою форму.

    Как растительные, так и животные клетки в большинстве случаев слишком малы, чтобы их можно было видеть невооруженным глазом. Их диаметр варьирует примерно от 1 до 100 мкм, а пятно диаметром 100 мкм уже находится у предела видимости. Некоторые виды амеб имеют 1—2 мм в диаметре; некоторые одноклеточные растения, например ацетабулярия, могут достигать длины 1 см и больше. К самым крупным одиночным клеткам относятся яйцеклетки рыб и птиц. Яйцеклетки крупных птиц могут достигать нескольких сантиметров в поперечнике. В курином яйце собственно клетку представляет собой только желток;       белок — это неклеточный материал, выделяемый яйцеводом курицы.

    Существование предельных размеров клетки обусловлено тем обстоятельством, что с увеличением размеров шара объем его возрастает пропорционально кубу радиуса, а поверхность увеличивается пропорционально квадрату радиуса. Поскольку для клеточного метаболизма необходимы кислород и питательные вещества, которые могут проникать в клетку только через ее поверхность, ясно, что величина клетки должна иметь известный предел, по достижении которого поверхность оказывается недостаточной для обеспечения метаболической активности протоплазмы. В каждом конкретном случае эта предельная величина зависит от формы клетки и от интенсивности ее метаболизма. Достигнув этой величины, клетка должна либо прекратить

рост, либо разделиться.   
 
 
 

    СПИСОК  ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ. 
 
 

    1. Алексеева Н., Книжка-шпаргалка, изд-во «Цитадель», М., 1995.

    2. К. Вилле, В. Детье,   БИОЛОГИЯ, изд-во «Мир», М., 1974.

    3. К. Люцис, Краткий энциклопедический справочник, изд-во «Русское энциклопедическое товарищество», М., 2003.

      

Информация о работе Строение и функции клеток