Строение и функции клеток

Автор работы: Пользователь скрыл имя, 28 Февраля 2011 в 18:20, доклад

Описание работы

Почти все организмы построены из обособленных единиц, называемых клетками. Каждая клетка представляет собой самостоятельную функциональную единицу, а протекающие в организме процессы слагаются из совокупности координированных функций его клеток. Клетки могут быть весьма различны по своим размерам, форме и функции. У некоторых мельчайших организмов все тело состоит из одной клетки. Другие организмы, например человек или дуб, построены из многих миллиардов клеток, пригнанных друг к другу.

Содержание работы

ЖИВАЯ КЛЕТКА……………………………………………..3
ОСНОВНЫЕ ОСОБЕННОСТИ КЛЕТКИ…………………6
ОБМЕН МАТЕРИАЛАМИ МЕЖДУ КЛЕТКОЙ И ОКРУЖАЮЩЕЙ СРЕДОЙ……………………………………8
КЛЕТОЧНОЕ ЯДРО……………………………………………15
ЦЕНТРИОЛИ И МИТОТИЧЕСКОЕ ВЕРЕТЕНО. ……………19
МИТОХОНДРИИ…………………………………………………21
ХЛОРОПЛАСТЫ…………………………………………………24
РИБОСОМЫ И ДРУГИЕ ОРГАНЕЛЛЫ ЦИТОПЛАЗМЫ…25
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………....29

Файлы: 1 файл

СТРОЕНИЕ И ФУНКЦИИ КЛЕТок.doc

— 497.00 Кб (Скачать файл)

    СОДЕРЖАНИЕ 
 

  1. ЖИВАЯ КЛЕТКА……………………………………………..3
  2. ОСНОВНЫЕ ОСОБЕННОСТИ КЛЕТКИ…………………6
  3. ОБМЕН МАТЕРИАЛАМИ МЕЖДУ КЛЕТКОЙ И ОКРУЖАЮЩЕЙ СРЕДОЙ……………………………………8
  4. КЛЕТОЧНОЕ ЯДРО……………………………………………15
  5. ЦЕНТРИОЛИ И МИТОТИЧЕСКОЕ ВЕРЕТЕНО. ……………19
  6. МИТОХОНДРИИ…………………………………………………21
  7. ХЛОРОПЛАСТЫ…………………………………………………24
  8. РИБОСОМЫ И ДРУГИЕ ОРГАНЕЛЛЫ ЦИТОПЛАЗМЫ…25
  9. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………....29
 
 
 
 
 
 
 
 
 
 

    ЖИВАЯ КЛЕТКА.

    Поскольку биологию обычно определяют как «науку о живых организмах», мы должны прежде всего уметь дифференцировать «живое» и «неживое». Мы называем организмом любой живой объект, будь то растение, животное или бактерия. Сравнительно легко видеть, что человек, дуб, розовый куст, лев или дождевой червь — живые, а скалы и камни — неживые. Но считать ли живыми такие образования, как вирусы, — это уже зависит от того, как мы определим понятие «жизнь».

    Почти все организмы построены из обособленных единиц, называемых клетками. Каждая клетка представляет собой самостоятельную функциональную единицу, а протекающие в организме процессы слагаются из совокупности координированных функций его клеток. Клетки могут быть весьма различны по своим размерам, форме и функции. У некоторых мельчайших организмов все тело состоит из одной клетки. Другие организмы, например человек или дуб, построены из многих миллиардов клеток, пригнанных друг к другу.

    В 1839 году чешский физиолог Пуркинье ввел для обозначения живого содержимого клетки термин протоплазма. Когда исследователи лучше изучили структуру и функции клеток, стало ясно, что живое содержимое клетки представляет собой неимоверно сложную систему разнородных компонентов (рис. 1). Термин «протоплазма» не имеет четкого физического или химического значения, но им до сих пор можно пользоваться для обозначения всех организованных компонентов клетки.

    Чтобы получить представление о том, как  выглядит протоплазма, мы можем исследовать какой-нибудь просто устроенный организм, вроде амебы или миксомицета (слизистого гриба), у которого этот живой материал ничем не прикрыт и поэтому хорошо виден под микроскопом. Протоплазма подобного организма полупрозрачна, причем она либо бесцветна, либо имеет слегка желтоватую, красноватую или зеленоватую окраску. Она обладает вязкой консистенцией густого сиропа и показалась бы слизистой на ощупь. При помощи обычного микроскопа в ней можно иногда различить зернышки или волоконца из более плотного материала, капельки жировых веществ или наполненные жидкостью пузырьки (вакуоли); все это взвешено в прозрачном однородном полужидком «основном веществе». Однако в том материале, который при исследовании в обычном микроскопе казался более или менее гомогенным, электронный микроскоп открывает удивительно сложные структуры (рис. 1, В и Г). Как показал рентгеноструктурный анализ, клеточные мембраны и разнообразные внутриклеточные образования обладают еще более тонкой структурой, определяемой, по-видимому, структурой больших молекул, из которых они состоят. 
 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              
         
         
         
         
         
         
         
         
         
         
         
         
         
         

            Рис. 1. Строение клетки.

    А. Схема типичной животной клетки. Б. Схема типичной растительной клетки. В. Электронная микрофотография ядра и окружающей его цитоплазмы в клетке печени лягушки (X 16 500). Г. Электронная микрофотография митохондрий и микросом в клетке печени крысы (X 65 000); на микросомах видны зернышки нуклеопротеида, а в верхнем левом углу и справа в митохондриях можно видеть структуры с двойными мембранами. 1 — клеточная мембрана; 2 — пиноцитозный пузырек; 3 —тельце Гольджи; 4 — центриоли; 5 — рибосома; 6 — ядерная мембрана;       7 — эндоплазматическая   сеть;  8— митохондрии;   9 — ядрышко;   10 — ядро;   11 — цитоплазма;    12 — лизосома;    13 — хлоропласт; 14 — вакуоль; 15 — клеточная стенка; 16 — липидное включение. 

    ОСНОВНЫЕ  ОСОБЕННОСТИ КЛЕТКИ. 

    Каждая  клетка содержит ядро и окружена плазматической мембраной. Эритроциты млекопитающих и клетки ситовидных трубок флоэмы в процессе своего созревания теряют ядро, а в поперечнополосатых мышцах и у многих грибов и водорослей на каждую клетку приходится по нескольку ядер, У простейших растений и животных весь живой материал заключен в одну плазматическую мембрану. Такие организмы можно считать одноклеточными или бесклеточными (т. е. имеющими тело, не разделенное на клетки). Однако их единственная клетка может быть высокоспециализирована как морфологически, так и функционально и может иметь очень большие размеры — крупнее, чем все тело некоторых многоклеточных организмов. Поэтому неверно было бы думать, что одноклеточный организм непременно должен быть мельче и проще многоклеточного.

    У разных растений и животных и в различных органах одного и того же растения или животного клетки поразительно разнообразны по своим размерам, форме, окраске и внутреннему строению. Однако все они имеют ряд общих особенностей: каждая клетка окружена плазматической мембраной, имеет ядро и содержит различного рода внутриклеточные органеллы. К последним относятся митохондрии, шероховатая (гранулярная) и гладкая (агранулярная) эндоплазматическая сеть, комплекс Гольджи, лизосомы и центриоли.

    Все организмы и составляющие их клетки имеют более или менее определенные размеры и форму. В них происходят метаболические реакции. Они обладают раздражимостью, способны к движению, росту, размножению и приспособлению к изменениям внешней среды. Хотя этот перечень свойств кажется вполне четким и определенным, граница между живым и и неживым довольно условна. Вирусам, например, свойственны лишь некоторые, но не все черты, характерные для живых организмов. Если мы поймем, что мы не в состоянии обоснованно ответить на вопрос, являются ли вирусы живыми, а можем лишь решать, следует ли называть их живыми, то проблема эта предстанет перед нами в правильном ракурсе. Неживые объекты могут обладать одним или несколькими из перечисленных выше свойств, но не всеми одновременно. Кристаллы в насыщенном растворе могут «расти», кусочек металлического натрия начинает быстро «бегать» по поверхности воды, а капля масла, плавающая в смеси глицерина и спирта, выпускает псевдоподии и передвигается наподобие амебы.

    Тот или иной род живых организмов всегда можно распознать по характерным для него форме и внешнему виду; взрослые особи каждого рода организмов, как правило, имеют определенные размеры. В отличие от этого размеры и форма неживых объектов гораздо менее постоянны. Живые организмы не гомогенны, а состоят из различных частей, выполняющих те или иные специальные функции; таким образом, они характеризуются специфической сложной организацией. Структурной и функциональной единицей как у растений, так и у животных служит клетка, которая в свою очередь тоже имеет специфическую организацию; каждый вид клеток обладает характерными размерами и формой, по которым его можно распознать.

    Совокупность  осуществляемых клеткой биохимических процессов, обеспечивающих ее рост, поддержание и восстановление, называется обменом веществ, или метаболизмом. Протоплазма каждой клетки непрерывно изменяется: она поглощает новые вещества, подвергает их разнообразным химическим изменениям, строит новую протоплазму и превращает в кинетическую энергию и тепло потенциальную энергию, заключенную в молекулах белков, жиров и углеводов, по мере того как эти вещества превращаются в другие, более простые соединения. Это постоянное расходование энергии представляет собой одну из характерных особенностей живых организмов, свойственных им одним. Некоторые типы клеток, например бактериальные клетки, отличаются высокой интенсивностью обмена. Другие клетки, например семена и споры, имеют столь низкий уровень обмена, что его с трудом удается обнаружить даже с помощью самых чувствительных приборов. Даже в пределах одного вида организмов или у одной особи интенсивность обмена может меняться в зависимости от таких факторов, как возраст, пол, общее состояние организма, активность эндокринных желез, беременность.

    Процессы обмена веществ принято разделять на анаболические и катаболические. Анаболизмом называют те химические процессы, при которых более простые вещества соединяются между собой с образованием более сложных веществ, что приводит к накоплению энергии, построению новой протоплазмы и росту. Катаболизмом же называют расщепление этих сложных веществ, приводящее к освобождению энергии; при этом происходит разрушение протоплазмы и расходование составляющих ее веществ. Процессы того и другого типа протекают непрерывно, и взаимозависимость между ними столь велика, что их трудно разграничить. Сложные соединения расщепляются, и их составные части соединяются друг с другом в новых комбинациях, образуя другие сложные вещества. Примером сочетания катаболизма с анаболизмом могут служить взаимные превращения углеводов, белков и жиров, непрерывно происходящие в клетках нашего тела. Поскольку большинство анаболических процессов требует затраты энергии, необходимы какие-то катаболические процессы, которые поставляли бы энергию для реакций, связанных с построением новых молекул. Клетки зеленых растений обладают способностью синтезировать свои собственные органические соединения из минеральных веществ, которые они получают из почвы и воздуха; животные же зависят в своем питании от растений.

    Другая  особенность живых организмов —  это их способность к движению. Подвижность большинства животных совершенно очевидна: они ползают, плавают, бегают или летают. Движения растений гораздо более медленны и не так заметны, но они все же происходят. Некоторые животные — губки, кораллы, устрицы, многие паразиты — сами не передвигаются с места на место, но у большинства из них имеются реснички или жгутики, приводящие в движение окружающую жидкую среду, которая доставляет этим животным пищу и все необходимое для жизни. Движение может быть результатом мышечного сокращения, биения ресничек или жгутиков (рис. 2, А) и, наконец, медленного течения массы протоплазмы — амебоидное движение (рис. 2, Б). Течение протоплазмы в клетках листьев растений известно под названием циклоза (рис. 2, В). 

 
 
 
 
 
 
 
 
     Рис.   2.   Схема, иллюстрирующая различные типы клеточных движений.

        А. Движение жгутика. Б. Амебоидное движение. В. Циклоз. 
     
     
     
     
     
     
     
     

    Живые организмы обладают раздражимостью: они реагируют на раздражители (стимулы), т. е. на физические или химические изменения в непосредственно окружающей их среде. Раздражители, вызывающие реакцию у большинства животных и растений,— это изменения цвета, интенсивности или направления световых лучей; изменения температуры, давления или звука; изменения в химическом составе почвы, воды или атмосферы, окружающей организм. Некоторые высокоспециализированные клетки тела обладают особой чувствительностью к раздражителям определенного типа: палочки и колбочки в сетчатке глаза реагируют на свет, определенные клетки в носу и во вкусовых почках языка — на химические стимулы, а специальные клетки кожи — на изменения температуры или давления. У низших животных и у растений такие специализированные клетки могут отсутствовать, но организм в целом реагирует на раздражение. Одноклеточные животные и растения отвечают на воздействие тепла или холода, некоторых веществ, света или на прикосновение микроиглы движением по направлению к раздражителю или от него.

    Раздражимость растительных клеток не всегда столь очевидна, как раздражимость животных клеток, но и растительные клетки чувствительны к изменениям окружающей среды. Так, при изменении освещения течение протоплазмы в клетках растений иногда ускоряется или прекращается. Некоторые растения (например, венерина мухоловка, растущая на болотах) чрезвычайно чувствительны к прикосновению и благодаря этому могут ловить насекомых: листья таких растений способны перегибаться вдоль средней жилки, а края их снабжены волосками; в ответ на раздражение, производимое насекомым, лист складывается, его края сближаются, а волоски, переплетаясь, не дают добыче выскользнуть; затем лист выделяет жидкость, которая убивает и переваривает насекомое. Способность ловить насекомых развилась как приспособление, позволяющее таким растениям получать часть необходимого для их роста азота из «поедаемой» добычи.

    Рост  живой ткани, т. е. увеличение клеточной массы, может происходить за счет увеличения размеров отдельных клеток, за счет увеличения их числа или же за счет того и другого. Увеличение размеров клеток может быть вызвано просто поглощением воды, но такого рода набухание обычно не рассматривают как рост. Ростом принято называть лишь те процессы, при которых увеличивается количество живого вещества организма, измеряемое количеством азота или белка. (Как вы думаете, почему показателем роста служит количество азота или белка, а не количество углеводов, жиров, серы или натрия?) Рост различных частей организма может происходить либо равномерно, либо одни части растут быстрее других, так что пропорции тела во время роста изменяются. Некоторые организмы могут расти в течение неопределенно долгого времени, тогда как другие имеют ограниченный период роста, заканчивающийся после достижения определенных размеров. Одна из замечательных особенностей процесса роста состоит в том, что всякий растущий орган, так же как и любая растущая клетка, продолжает в то же время функционировать.

    Если  есть какое-либо свойство, которое можно считать совершенно обязательным атрибутом жизни, так это способность к воспроизведению. Наиболее простые вирусы лишены обмена веществ, не двигаются и не растут, и все-таки, поскольку они способны воспроизводить себя, а также мутировать, большинство биологов считает их живыми. Так как все живое происходит только от живого и не может возникать путем самозарождения, эта способность воспроизводить самих себя является важнейшей особенностью живых организмов.

    Процесс размножения может сводиться  к простому делению одного индивидуума на два. Однако у большей части организмов размножение связано с образованием специализированных клеток — яйцеклеток и сперматозоидов, которые, соединяясь между собой, образуют оплодотворенное яйцо, или зиготу, развивающуюся в новый организм. У некоторых паразитических червей процесс развития слагается из нескольких совершенно различных форм, сменяющих одна другую, пока цикл не завершится образованием взрослой особи.

Информация о работе Строение и функции клеток