Мейоз и его генетическая сущность

Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 10:00, контрольная работа

Описание работы

Мейоз (от греч. мейозис - уменьшение) - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого из диплоидных клеток образуются гаплоидные клетки. Мейоз протекает сходно почти у всех организмов. Он состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление), разделенных непродолжительным периодом интеркинеза. При этом репликация ДНК предшествует лишь первому делению.

Файлы: 1 файл

генетика.docx

— 1.76 Мб (Скачать файл)

зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.

Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.

Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).

Гетероплоидия. В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.

Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.

Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.

Из сказанного видно, что анэуплоидия, т. е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом елечет за собой болезненные состояния, известные под общим названием хромосомных болезней.

Хромосомные абберации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.

Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.

Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом. Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется, к местам разрыва, но другими

концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.

Транслокации возникают в тех случаях,  когда участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары.  Транслокация участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.

33. Хромосомные перестройки: типы, последствия

Хромосомные мутации. Возникают и результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают четыре основных типа хромосомных аберраций: нехватки, удвоения (дупликации), инверсии, транслокации.

Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так, при нехватке участка одной из хромосом у кукурузы ее проростки лишены хлорофилла.

Удвоение (дупликация) связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к проявлению новых признаков. Так, у дрозофилы ген полоско-видных глаз (вмэсто круглых) обусловлен удвоением участка в одной из хромосом.

Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180°. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. Н. П. Дубинин установил, что инверсии широко распространены, в частности у дрозофил, взятых из природы, и, по-видимому, могут играть роль в эволюции видов.

Транслокации возникают в тех случаях. когаа участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т. е. хромосоме из другой пары Транслокачия участка одной из хромосом (21-й) известна у человека; оно может быть причиной болезни Дауна Большинство крупных хромосомных аберраций в зиготах у человека приводит к тяжелым аномалиям, несовместимым с жизнью, либо к гибели зародышей еще во время внутриутробного развития.

Полиплоидия.  Это увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза. Вспомним, что половые клетки имеют гаплоидный набор хромосом (л), а для

зигот и всех соматических клеток характерен диплоидный набор (2л). У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: Зn — триплоид, 4n — тетраплоид, 5n — пентаплоид, 6n — гексаплоид и т. д. По-видимому, эволюция ряда цветковых растений шла путем полиплоидизации. Культурные растения в своем большинстве— полиплоиды.

Формы, возникающие в результате умножения хромосом одного генома, носят название автоплоидных. Однако известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных геномов. Аллополиплоиды искусственно получены при гибридизации ряда видов растений и животных. Так, Г. Д. Карпеченко создал аллополиплоидный гибрид редьки и капусты. В данном случае каждый исходный вид имеет 18 хромосом, а гибридный — 36, так как является аллотетраплоидом.

Полиплоидные формы известны и у животных. По-видимому, эволюция некоторых групп простейших, в частности инфузорий и радиолярий, шла также путем полиплоидизации. У некоторых многоклеточных животных полиплоидные формы удалось создать искусственно (тутовый шелкопряд).

Гетероплоидия. В результате нарушения мейоза и митоза число хромосом может изменяться и становиться не кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии. Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромосомный набор равен 2n + 1. Трисомия может быть по любой из хромосом и даже по нескольким. Двойной трисомик имеет набор хромосом 2n + 3 тройной — 2лn + 3 и т.

Явление трисомии впервые описано у дурмана. Известна трисомня и у других видов растений и животных, а также у человека. Трисомиками являются, например, люди с синдромом Дауна. Трисомики чаще всего либо нежизнеспособны, либо отличаются пониженной жизнеспособностью и рядом патологических признаков.

Явление, противоположное трисомии, т. е. утрата одной хромосомы из пары в диплоидном наборе, называется моносомией, организм же—моносомиком; его кариотип — 2n— 1. При отсутствии двух различных хромосом организм является двойным моносомиком (2n — 2). Если из диплоидного набора выпадают обе гомологические хромосомы, организм называется ну-лисомиком. Он, как правило, нежизнеспособен.

Из сказанного видно, что анэуплоидия, т. е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом влечет за собой болезненные состояния, известные под общим названием хромосомных болезней.

 

34. Генные мутации: механизм  возникновения, значение в эволюции и селекции.

 Генные мутации  затрагивают структуру самого  гена. Мутации могут изменять  участки молекулы ДНК различной длины. Наименьший участок, изменение которого приводит к появлению мутации, назван мутоном. Его может составить только одна пара нуклеотидов. Изменение последовательности нуклеотидов в ДНК обусловливает изменение в последовательности триплетов и е конечном итоге изменяет программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.

Большинство мутаций, с которыми связаны эволюция органического мира и селекция  - трансгенации. Вот несколько примеров мутаций, широко используемых при изучении закономерностей наследственности. У дрозофилы, имеющей в норме красные глаза, появились мутанты с глазами белого цвета, абрикосового цвета, цвета слоновой кости и т. д. Так возникла большая серия аллелей, включающая более 10 мутантных изменений окраски глаз.

Альбинизм животных- типичная генная мутация .В результате мутации гороха появились растения с Желтыми и зелеными   семенами, с гладкими   и морщинистыми    зернами,   белыми    и пурпурными цветками и  т. д.   Гены, которые возникли в результате мутации одного локуса как известно, являются алле.1ьными. Появление мутации для каждого  генного  локуса - событие довольно редкое. Различные   аллели имеют неодинаковую частоту мутирования. Так, у человека мутация, приводящая к карликовости, встречается в 5-13 гаметах на миллион, мышечной дистрофии    (мышечная   слабость)в 8-11,микроцефалии    (недоразвитие мозга) -в 27,  ретинобластомы (опухоль сетчатки глаза) - в 3-12 гаметах на миллион и т. д.

Для   каждой аллели   частота   мутирования    более или менее постоянна и колеблется   в пределах   10-5—10-7.   Однако   ввиду огромного числа генов у каждого организма мутации довольно часты. Так, у высших растений и   животных   до 10 % гамет несут какие-либо  новые, спонтанно  возникшие   изменения.

Мутации возникают в любых клетках, поэтому их делят на соматические и генеративные. Биологическое значение их неравноценно и связано с характером размножения организмов.

При половом размножении признаки, появившиеся в результате соматических мутаций, потомкам не передаются и в процессе эволюции никакой роли не играют. Однако в- индивидуальном развитии они могут влиять на формирование признака: чем в более ранней стадии развития возникнет соматическая мутация, тем больше участок ткани, несущий данную мутацию. Такие особи называются мозаиками. Например, мозаиками являются люди, у которых цвет одного глаза отличается от цвета другого, или животные определенной масти, у которых на теле появляются пятна другого цвета, и т. п. Не исключено, что соматические мутации, влияющие на метаболизм, являются одной из причин старения и злокачественных новообразований.

Если мутация происходит в клетках, из которых развиваются гаметы, или в половой клетке, то новый признак проявится в ближайшем или последующих поколениях. Наблюдения показывают, что многие мутации вредны для организма. Это объясняется тем, что функционирование каждого органа сбалансировано в отношении как других органов, так и внешней среды. Нарушение существующего равновесия обычно ведет к снижению жизнедеятельности или гибели организма. Мутации, снижающие жизнедеятельность, называются полулетальными.. Мутации, не совместимые с жизнью, носят название летальных (лат. letalis — смертельный). Однако некоторая часть мутаций может оказаться полезной. Такие мутации являются материалом для прогрессивной эволюции, а также для селекции ценных пород домашних животных и культурных растений. По-видимому, чаще всего «полезные» мутации в сочетании с отбором лежат в основе эволюции.

Многочисленные факты привели к убеждению, что гены действуют через кодируемые ими ферменты. Такая точка зрения, получившая


Информация о работе Мейоз и его генетическая сущность