Мейоз и его генетическая сущность

Автор работы: Пользователь скрыл имя, 10 Июня 2015 в 10:00, контрольная работа

Описание работы

Мейоз (от греч. мейозис - уменьшение) - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого из диплоидных клеток образуются гаплоидные клетки. Мейоз протекает сходно почти у всех организмов. Он состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление), разделенных непродолжительным периодом интеркинеза. При этом репликация ДНК предшествует лишь первому делению.

Файлы: 1 файл

генетика.docx

— 1.76 Мб (Скачать файл)

перспективы его использования.

Клонирование человека: этические проблемы

Принципиальная возможность клонирования человека вызвала бурное обсуждение во всем мире. С одной стороны появились горячие поклонники клонирования (вплоть до создания религиозных сект), видящие в нем возможность улучшения человеческой природы, достижения бессмертия или по крайней мере радикальный метод борьбы с болезнями. С другой стороны, еще более многочисленны голоса решительных противников всяких попыток клонирования человека. Традиционно консервативную позицию, занимают, в частности, представители ведущих религий.

Во многом, споры вокруг проблемы связаны с распространенной в обществе генетической безграмотностью. Опросы, проведенные в США, показали, что значительное число американцев боится создания «армий клонов», «выведения суперрасы». Есть люди, которые искренне считают, что с помощью клонирования можно в буквальном смысле возродить умерших людей и т.д. Но даже если оставить в стороне явные заблуждения, а также апелляции к религиозным чувствам, которые разделяют далеко не все, все равно остаются реальные этические проблемы.

Репродуктивное клонирование вызывает следующие возражения:

Крайне низкая результативность клонирования, высокая летальность среди клонов делают попытки клонирования человека этически неприемлемыми вплоть до усовершенствования методики до приемлемого уровня безопасности для клона.

Неизвестно, как будет влиять на развитие человека и структуру общества новый тип семейных отношений, который может сложиться в связи с распространением клонирования.

Предполагают, что клоны будут испытывать проблемы со становлением личностного самосознания, с интеграцией в человеческое общество.

Клонирование ограничивает генетическое разнообразие человека.

Терапевтическое клонирование вызывает вопросы в связи с технологией его проведения. В настоящее время реально осуществима только технология клонирования, предполагающая выращивание клона до определенного предела in vivo. Естественно, к человеку это не применимо – женщина не может рассматриваться как инкубатор терапевтического материала. Эта проблема решается разработкой оборудования для выращивания зародыша in vitro. Однако, остается проблема «убийства» зародыша. С каких пор зародыш становится человеком? Существует мнение, что новый человек возникает в момент зачатия (в случае клона – в момент пересадки ядра). В этом случае использование зародыша для выращивания трансплантатов недопустимо. На это возражают, что до определенного периода зародыш представляет лишь скопище клеток, но никак не человеческую личность. Для преодоления этой проблемы ученые пытаются начать работу с зародышем как можно раньше. Констатируем, что отношение общества к репродуктивному клонированию в целом отрицательное. Во всех странах, где уже разработано законодательство по клонированию

, репродуктивное клонирование  запрещено. Однако, остается немало государств, не регулирующие вопросы клонирования, чем и пользуются научные авантюристы, пытающиеся (или делающие вид, что пытаются) клонировать человека.

К терапевтическому клонированию отношение более мягкое, что, видимо, вызвано его большей ценностью. Если трудно представить практическое применение репродуктивного клонирования (разве, что случаи бесплодия с невозможностью искусственного оплодотворении), то значение терапевтического клонирования несомненно. Так, в Великобритании терапевтическое клонирование официально разрешено. При этом жестко ограничивается возраст эмбриона, с которым можно вести работу (в Британии – не более 10 недель).

29. Биотехнология  человека.

Использование человеком живых организмов и биологических процессов для промышленного получения продуктов называется биотехнологией.

Биотехнологические процессы используются человеком: молочнокислые бактерии – для получения молочнокислых продуктов, различные штаммы дрожжей – в виноделии, пивоварении, хлебопечении.

Биотехнология – одно из ведущих направлений современной биологии. Методы генной и клеточной инженерии позволят человечеству избавиться от ряда наследственных болезней.

Биотехнология – это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Объекты биотехнологии: вирусы, бактерии, протисты, дрожжи, растения, животные или изолированные клетки и субклеточные структуры (органеллы).

Основные направления биотехнологии:

- производство биологически  активных соединений (гормонов, витаминов, ферментов), лекарственных препаратов;

- разработка и использование  биологических методов борьбы  с загрязнением окружающей среды;

- создание новых полезных  штаммов микроорганизмов, сортов растений, пород животных.

Интенсивное развитие микробиологической промышленности началось с 70 годов XX века. В качестве питательной среды для бактерий начали использоваться непищевые продукты: жидкие парафины нефти, синтетические спирты, отходы деревообрабатывающей промышленности и др.Получаемые таким путем белково-витаминные препараты позволяют решить проблему нехватки кормового белка и повысить продуктивность животноводства. Микробиологическая промышленность производит ферменты, антибиотики, гормоны, аминокислоты и др.

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности. Эти технологии базируются на использовании каталитического потенциала различных биологических агентов и систем – микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток. В настоящее время разработка и освоение биотехнологии занимают важное место в деятельности практически всех стран. Достижение превосходства в биотехнологии является одной их центральных задач в экономической политике развитых стран. Лидерами биотехнологии являются сегодня США и Япония, накопившие многолетний опыт биотехнологий для сельского хозяйства, фармацевтической, пищевой и химической промышленности. Прочное положение в производстве ферментных препаратов, аминокислот, белка, медикаментов занимают страны Западной Европы, а также Россия. Эти страны характеризуются мощным потенциалом новой техники и технологии, интенсивными фундаментальными и прикладными исследованиями в различных областях биотехнологии. Определить сегодня, что же такое биотехнология, весьма не просто. Вместе с тем, само появление этого термина в нашем словаре глубоко символично. Оно отражает мнение, что применение биотехнологических материалов и принципов в ближайшие годы радикально изменит многие отрасли промышленности и само человеческое общество. Интерес к этой науке и темпы ее развития в последние годы растут очень быстро. Человек использовал биотехнологию многие тысячи лет: люди занимались пивоварением, пекли хлеб, получали кисломолочные продукты, применяли ферментации для получения лекарственных веществ и переработки отходов. Но только новейшие методы биотехнологии, включая методы генетической инженерии, основанные на работе с рекомбинантными ДНК, привели к «биотехнологическому буму», свидетелями которого являемся мы в настоящее время. Новейшие технологии генетической инженерии позволяют существенно усовершенствовать традиционные биотехнологические процессы, а также получать принципиально новыми, ранее недоступными способами разнообразные ценные продукты. Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25–30 лет. Основу этих событий составили новые представления в области наследственности и методические усовершенствования, которые приблизили человечество к познанию превращений ее материального субстрата и проложили дорогу новейшим промышленным процессам. Помимо этого, ряд важнейших открытий в других областях также повлиял на развитие биотехнологии. Генетическая инженерия существует немногим более 20 лет. Она блестяще раскрыла свои возможности в области прокариотических организмов. Однако новые технологии, применяемые к высшим растениям и животным, пока не столь значительны. Попытки применения приемов генетической инженерии к высшим растениям и животным сталкиваются с огромными трудностями, обусловленными как несовершенством наших знаний по генетике эукариот, так и сложностью организации высших организмов. Использование научных достижений и практические успехи биотехнологии тесно связаны с фундаментальными исследованиями и реализуется на самом высоком уровне современной науки. В этом плане нельзя не отметить удивительную научную многоликость биотехнологии: ее развитие и достижения теснейшим образом связаны и зависят от комплекса знаний не только наук биологического профиля, но также и многих других. Сегодня биотехнология стремительно выдвинулась на передние позиции научно-технического прогресса.

Роль в сельском хозяйстве

Микроорганизмы могут регулировать рост растений и животных, подавлять заболевания. Некоторые бактерии изменяют кислотность и соленость почвы, другие продуцируют соединения, связывающие железо, третьи - вырабатывают регуляторы роста. Как правило, микроорганизмами инокулируют семена и или растения перед посадкой. 
В животноводстве биотехнология также находит применение. Это диагностика, профилактика, лечение заболеваний с использованием техники моноклональных антител, генетическое улучшение пород животных. Широко используются биотехнологические методы для искусственного осеменения. Биотехнология применяется для силосования кормов, позволяя повышать усвоение растительной биомассы, для утилизации отходов животноводческих ферм и получения экологически чистых органических удобрения на основе переработки отходов растениеводства и животноводства. 
Некоторые вещества, полученные с помощью микроорганизмов могут использоваться в виде кормовых добавок, другие - подавляют вредную микрофлору в желудочно-кишечном тракте или стимулируют образование специфических микробных метаболитов (кормовые антибиотки, которые используются все шире). 
Аминокислоты в большом количестве применяют как добавку к растительным кормам, которые дефицитны по метионину, треонину, триптофану и особенно по лизину. Если в животных белках содержится 7—9 % лизина, то в белках пшеницы — только около 3 %. Внесение в корма лизина до содержания 0,3 % позволяет сократить их расход больше чем на 20 %. За последние 8 лет количество аминокислот, добавляемых в корма, выросло в 14 раз. Во многих странах метионин добавляют к соевой муке — белковой добавке кормов. Главная область практического применения аминокислот — обогащение кормов. Около 66 % общего количества аминокислот, получаемых в промышленности, используют в кормах, 31 % — в пище и 4 % — в медицине, косметике и как химические реактивы. 
Роль в медицине

Начиная с середины 1960-х гг. в связи с возросшей сложностью выделения эффективных антибиотиков и распространением устойчивости к наиболее широко применяемым соединениям у большого числа патогенных бактерий исследователи перешли от поиска новых антибиотиков к модификации структуры уже имеющихся. Они стремились повысить эффективность антибиотиков, найти защиту от инактивации ферментами устойчивых бактерий и улучшить фармакологические свойства препаратов. Большинство исследований было сосредоточено на пенициллинах и цефалоспоринах. 
Антибиотики вырабатываются в результате совместного действия продуктов 10—30 генов, поэтому практически невозможно обнаружить отдельные спонтанные мутации, которые могли бы повысить выход антибиотика с нескольких миллиграммов на литр в штамме дикого типа до 20 г/л и более пенициллина или тетрациклина в промышленных штаммах Penicillium chrysogenum или Streptomyces auerofaclens. Эти высокопродуктивные штаммы были получены в результате последовательных циклов мутагенеза и селекции. 
В медицине также используют зеленую водоросль Scenedesmus. Ее культивируют в жидкой питательной среде (установки дают до 80 тонн водорослей в год), извлекают и проводят экстракцию этиловым спиртом. Биомассу отделяют и подвергают ферментативному гидролизу щелочной протеазой. Около 50% белков при этом распадается до пептидов. Гидролизат содержит почти все незаменимые аминокислоты, представляет собой порошок желтовато-зеленого цвета с приятным запахом и вкусом. Используется этот продукт для быстрого восстановления организма, а также как компонент косметических средств. Если вместо обработки этанолом провести двукратную экстракцию дистиллированной водой, а затем высушить, то получается порошок светло-желтого цвета. Его используют как биостимулятор и готовят из него препараты для лечения плохо заживающих ран. 
Для лечения широкого спектра заболеваний (бактериальные инфекции кишечника, дыхательных путей, гнойных инфекций, аллергий) успешно применяются штаммы Bacillus subtilis). Штаммами E. coli лечат ряд кишечных заболеваний. БАВ, секретируемые сапротрофами, могут регулировать ферментативные процессы в организме и вступать во взаимодействие с поступающими в организм ксенобиотиками. Штаммы можно получать непосредственно от человека, тогда они будут представлять его естественную микрофлору.Можно целенаправленно выводить лабораторные мутантные штаммы, в том числе методами генной инженерии и вводить их в организм. Способы введения могут быть различны: капсулы, растворимые в кишечном соке, культуры штаммов-продуцентов на пленочной основе, в виде свечей, а при легочных заболеваниях – в виде аэрозолей. 
Роль в пищевой промышленности

Пища должна быть разнообразной и содержать белки, жиры, углеводы и витамины. Источники энергии — жиры и углеводы в определенных пределах взаимозаменяемы, причем их можно заменить и белками, но белки нельзя заменить ничем. Проблема питания людей в конечном счете заключается в дефиците белка. Там, где сегодня люди голодают, не хватает прежде всего белка. Установлено, что ежегодный дефицит белка в мире, по самым скромным подсчетам, оценивается в 15 млн. т. Наибольшую популярность как источники белка приобрели семена масличных культур — сои, семян подсолнечника, арахиса и других, которые содержат до 30 процентов высококачественного белка. По содержанию некоторых незаменимых аминокислот он приближается к белку рыбы и куриных яиц и перекрывает белок пшеницы. Белок из сои широко уже используется в США, Англии и других странах как ценный пищевой материал.Эффективным источником белка могут служить водоросли. Увеличить количество пищевого белка можно и за счет микробиологического синтеза, который в последние годы привлекает к себе особое внимание. Микроорганизмы чрезвычайно богаты белком — он составляет 70—80 процентов их веса. Скорость его синтеза огромна. Микроорганизмы примерно в 10—100 тысяч раз быстрее синтезируют белок, чем животные. Здесь уместно привести классический пример: 400-килограммовая корова производит в день 400 граммов белка, а 400 килограммов бактерий — 40 тысяч тонн. Естественно, на получение 1 кг белка микробиологическим синтезом при соответствующей промышленной технологии потребуется средств меньше, чем на получение 1 кг белка животного. Да к тому же технологический процесс куда менее трудоемок, чем сельскохозяйственное производство, не говоря уже об исключении сезонных влияний погоды — заморозков, дождей, суховеев, засух, освещенности, солнечной радиации и т. д.

Применяя обычные технологические линии по производству синтетических волокон, можно получать из искусственных белков длинные нити, которые после пропитки их формообразующимн веществами, придания им соответствующего вкуса, цвета и запаха могут имитировать любой белковый продукт. Таким способом уже получены искусственное мясо (говядина, свинина, различные виды птиц), молоко, сыры и другие продукты. Они уже прошли широкую биологическую апробацию на животных и людях и вышли из лабораторий на прилавки магазинов США, Англии, Индии, стран Азии и Африки. Только в одной Англии их производство достигает примерно 1500 тонн в год. Интересно, что белковую часть школьных обедов в США уже разрешено на 30 процентов заменять искусственным мясом, созданным на основе соевого белка.

30. Трансплантация  эмбрионов

Трансплантация. Ауто-, алло- и ксенотрансплантация.      Трансплантацией (лат. transplantatio — пересадка) называется пересадка или приживление органов и тканей. Пересаживаемый участок органа называется трансплантатом. Организм, от которого берут ткань для пересадки, является донором; организм, которому пересаживают трансплантат,— реципиентом.

Различают аутотрансплантацию, когда пересадка осуществляется на другую часть тела того же организма, аллотрансплантацию, когда производят пересадку от одной особи другой, принадлежащей тому же виду, и ксе-нотрансплантацию, когда донор и реципиент относятся к разным видам.

Огромный экспериментальный и клинический материал показал, что успех трансплантации зависит от иммунологических реакций организма. Ауто-

трансплантации происходят наиболее успешно, так как белки (антигены)

трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает, и возможно истинное приживление. При аллотрансплан-тациях донор и реципиент, как правило, различаются по антигенам. В опытах на гидрах и червях аллотрансплантации удаются, так как иммунологические реакции у них выражены слабо. Однако у высших животных и человека обычно не наблюдается длительное приживление аллотрансплантатов. Исключение составляют однояйцовые близнецы, генотип которых, а следовательно, и белковый состав одинаковы. Ксенотрансплантация удается у некоторых беспозвоночных, но у высших животных трансплантаты от особей других видов рассасываются.

Трансплантация в медицинской практике. В тех случаях, когда орган не может регенерировать, но он необходим, остается один метод — заменить его таким же естественным или искусственным органом.

При пластических операциях, проводимых с целью восстановления формы и функции какого-либо органа или деформированной поверхности тела, распространена пересадка кожи, хряща, мышц, сухожилий, кровеносных сосудов, нервов, сальника.

Значительную часть пластических операций составляют косметические, направленные на восстановление деформированных частей лица. При пластических операциях пользуются    преимущественно   аутотрансплантацией.

Пересадка роговицы проходит без осложнений, которые сопровождают пересадку других органов, так как роговица не содержит кровеносных капилляров и, следовательно, в нее не попадают    клетки    иммунной    системы крови.

Проблема тканевой несовместимости. Успехи трансплантологии. Поскольку абсолютно точно подобрать донора и реципиента по всем антигенгм невозможно, возникает проблема подавления иммунной реакции отторжения. Большое значение в этом имеет явление иммунологической толерантности (лат. tolerantia — терпимость) к чужеродным клеткам. Это явление было открыто на разных организмах независимо друг от друга чешским эмбриологом М. Гашеком (1953) и английским зоологом П. Медаваром (1953). М. Гашек произвел опыт по эмбриональному парабиозу у двух цыплят, различающихся по антигенам. В результате у обеих птиц выработалась толерантность: при последующем введении им эритроцитов друг от друга не происходило выработки антител, не отторгались и пересаженные от партнера кожные трансплантаты. Иммунная система, направленная против любых генетически чужеродных веществ и клеток, защищает организм от микробов и вирусов. Однако это свойство, выработанное в процессе длительной эволюции, обращается против интересов человека в случае пересадки органов и тканей. В этом случае, а также при аутоиммунных заболеваниях, перед учеными встала задача подавления иммунитета — иммунодепрессии. Это достигается различными способами: подавлением активности иммунной системы, облучением, введением специальной антилимфатической сыворотки, гормонов коры надпочечников.

Информация о работе Мейоз и его генетическая сущность