Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 18:49, контрольная работа
Рост – это согласованное увеличение количества всех химических компонентов, формирующих клеточные структуры. Рост клеток обычно сопровождается увеличением их массы и размеров. Однако эта закономерность наблюдается не всегда, так как в некоторых условиях клетки способны просто накапливать запасные или резервные вещества, т. е. масса может увеличиваться, но рост при этом не наблюдается.
В подходящей среде, к которой бактерии полностью адаптированы, они находятся в состоянии сбалансированного роста. В период сбалансированного роста удвоение биомассы сопровождается удвоением всех других учитываемых параметров популяции, например, количества белка, ДНК, РНК и внутриклеточной воды. Иными словами, культуры, растущие сбалансированно, сохраняют постоянный химический состав.
1. Рост бактериальной клетки в периодической культуре. Кривая роста, фазы и закономерности роста……………………………….
2. Хемосинтез. Хемолитотрофные микроорганизмы, особенности их метаболизма. Значение в природе…………………………………………
3. Роль микробиологического фактора в самосогревании зерна. Участие и роль микроорганизмов в этом процессе………………………………………………
Список литературы…………………………………………..
Энергетический метаболизм хемолитоавтотрофов.
Окисление восстановленных минеральных соединений азота, серы, железа служит источником энергии для хемолитотрофных микроорганизмов. Деление хемолитотрофных микроорганизмов на группы основано на специфичности каждой группы по отношению к окисляемому соединению. Различают нитрифицирующие бактерии, железобактерии, бактерии, окисляющие соединения серы.
Нитрифицирующие бактерии окисляют аммонийный азот до нитратов. Процесс называется нитрификацией и идет в две фазы, за каждую из которых ответственны свои возбудители:
NH4+2O>NO2+2H2O+557кДж/моль (1)
2NO2+O2>2NO3+146 кДж/моль (2)
Окисление аммиака до нитритов с передачей электронов в дыхательную цепь служит энергетическим процессом для группы нитрозобактерий. Окисление аммонийного азота - многостадийный процесс, при котором в качестве промежуточных продуктов образуются гидроксиламин (NН2ОН) и гипонитрит (NОН). Энергетическим субстратом, окисляемым в дыхательной цепи, служит гидроксиламин.
Железобактерии (
4FеСО3 + O2 + 6Н2O>4Fе(ОН)3 + 4СО2+ 167 кДж/моль.
В транспорте электронов от двухвалентного железа к кислороду принимают участие хиноны и цитохромы. Перенос электронов сопряжен с фосфорилированием.
Эффективность использования энергии у этих бактерий настолько мала, что для синтеза 1 г клеточного вещества им приходится окислять около 500 г углекислого железа.
Бактерии, окисляющие соединения серы и способные к автотрофной ассимиляции СО2, относятся к группе тионовых бактерий. Энергию для конструктивного метаболизма тионовых бактерий получают в результате окисления сульфидов, молекулярной серы, тиосульфатов и сульфитов до сульфатов:
S2-+2O2>SO4+794 кДж/моль
S0+H2O+1,5O2>H2SO4+ 585 кДж/моль
S2O3+H2O+2O2>2SO4+2H+936 кДж/моль
SO3 + 0,5O2>SO4 +251 кДж/моль
Дыхательная цепь тионовых бактерий содержит флавопротеиды, убихиноны, цитохромы.
Механизм ассимиляции СО2 в конструктивных целях у всех хемолитоавтотрофов сходен с таковым у фотосинтезитезирующих автотрофов, использующих в качестве донора водорода воду. Основное отличие состоит в том, что в процессе хемосинтеза кислород не выделяется.
Превращение соединений серы.
Сера содержится в организме животных и растений, входит в состав серосодержащих аминокислот (цистеин, цистин, метионин), витаминов группы B (биотин, тиамин), много ее в волосах и перьях. Органические соединения серы в почве представлены остатками животных и растений. Минерализация серы осуществляется микроорганизмами, которые в аэробных условиях доводят ее до сульфатов, а в анаэробных – восстанавливают серосодержащие белки до сероводорода и частично до меркаптанов.
Восстановленные соединения серы окисляют
автотрофные (фотолитотрофы, хемолитотрофы)
микробы. Среди них различают
нитчатые, тионовые и фотосинтезирующие.
Нитчатые хемолитотрофные серобактерии
– аэробы и относятся к родам Beggiatoa, Theatric,Thio
2H2S + O2 ® 2H2O + 2S + 532,1 кДж;
2S + 3O2 + 2H2O ® 2H2SO4 + 1231,9 кДж.
Виды рода Beggiatoa различают по толщине нитей. Они растут в тех водоемах, где происходит разложение органического вещества с выделением водорода.
Тионовые хемолитотрофные бактерии представляют собой грамотрицательные, неспорообразующие, подвижные палочки и относятся к роду Thiobaccilus. Они окисляют серу и ее соединения (сероводород, сульфиды и др.), которые накапливаются вне клетки.
В зонах анаэробиоза – в глубоких водоемах (некоторых морях, лиманах, озерах), а также в затопляемых, сильно увлажненных почвах, – происходит восстановление сульфатов до сероводорода. Такой процесс получил название десульфофикации (сульфатредукции). Сероводород – сильный яд, и при наличии его в среде больших количествах погибает все живое. Так в Черном море на глубине более 200 м концентрация сероводорода сильно возрастает и создаются условия, неблагоприятные для жизни. Продукты восстановления соединений серы образуются на морском дне, куда в большом количестве оседает органическое вещество.
Сульфатредукция осуществляется микроорганизмами двух родов: Desulfovibrio и Desulfotomaculum. Их клетки не окрашиваются по Граму, но отличаются по форме и некоторым другим признакам. Представители рода Desulfovibrio – вибрионы, монотрихи – не образуют спор, растут при температуре около 30°C (мезофилы). Микробы рода Desulfotomaculum имеют палочковидную форму, образуют споры (бациллы), перитрихи и растут при температуре от 30 до 55°C. Один из видов этого рода – D. nigrificans – термофил (оптимальная температура роста 55°C), остальные: D. ruminis и D. orientis – мезофилы (оптимальная температура роста 30 – 37 °C).
Микроорганизмы, восстанавливающие соединения серы, – облигатные анаэробы. В таких условиях они в качестве конечного акцептора водорода используют сульфат. Донором водорода служат различные органические соединения и молекулярный водород. Процесс окисления органических соединений идет не до конца, основным продуктом бывает уксусная кислота, а побочным – сероводород. Образовавшийся газ может затем окисляться серобактериями, в результате чего накапливается биогенная сера.
Наряду с термофилами, ацидофилами, галофилами, метанобразующими и другими микроорганизмами обнаружены и серобактерии, которые отнесены к третьей линии эволюции организмов – архебактериям. Среди них определенный интерес представляет род Sulfolobus (Brock, Belly, Weiss, 1972).
Клетки этого рода имеют округлую форму. Не образуют спор и жгутиков, но имеют пили. Не окрашиваются по Граму. Их стенка не содержит пептидогликана (муреина), а состоит из гликопротеиновых гексагонально расположенных субъединиц. Устойчивы к некоторым антибиотикам, ингибирующим синтез пептидогликана. Трехслойная цитоплазматическая мембрана не содержит липидов (как и у других архебактерий), они заменены изопреноидными и гидроизопреноидными насыщенными углеводородами и простыми изопрениглицериновыми эфирами. Растут в аэробных условиях. На жидких средах образуют муть и нежную пленку. На агаре или полисиликатном геле – колонии беспигментные, гладкие и блестящие. Все виды Sulfolobus в присутствии углерода диоксида используют в качестве источника энергии элементарную серу, окисляют ее до серной кислоты и тем самым понижают pH среды до 1–1,5. Они аборигены высокотемпературных кислых экотопов вулканического происхождения – горячих источников и почв (сольфатар). Такие экотопы содержат много сульфидов и серы. Это богатейшие серой кислые почвы Йеллоустонского национального парка США, Исландии, Новой Зеландии, Курильской гряды, Камчатки и других мест.
Бактерии рода Sulfolobus могут быть использованы для выщелачивания металлов при высоких температурах из таких трудноокисляемых сульфидов, как пирит, халькопирит, молибден и др., а также удаления серных компонентов из каменного угля.
Окисление неорганических восстановленных соединений серы с помощью фототрофных и хемотрофных эубактерий является одним из звеньев круговорота серы в природе. В первом случае процесс протекает в анаэробных условиях, во втором – в аэробных. Хемотрофы, окисляющие серу, обитают в морских и пресных водах, содержащих O2, в аэробных слоях почв разного типа. Поскольку эта группа объединяет организмы с разными физиологическими свойствами, ее представителей можно обнаружить в кислых горячих серных источниках, кислых шахтных водах, в водоемах со щелочной средой и высокой концентрацией NaCl.
Хемолитотрофные серобактерии обнаружены на глубине 2600 – 6000 м в местах, где на поверхность дна океана из недр земной коры выходят горячие источники. Вода источников, называемая геотермальной жидкостью, имеет температуру до 350°, не содержит совсем O2 и NO3-, но обогащена H2S, CO2 и NH4+. На дне океана гидротермальная жидкость смешивается с окружающей морской водой, имеющей температуру 2°, которая наоборот не содержит H2S и характеризуется достаточно высоким уровнем O2 и NO3-. Эти области отличаются также высоким давлением и полным отсутствием света.
Вокруг выходов геотермальной жидкости
были обнаружены плотные скопления необычных
беспозвоночных животных. Наличие таких
«оазисов» жизни объясняется присутствием
бактерий, среди которых были виды H2S-окисляющие
хемолитоавтотрофы (Thiomicrospira и Thiobacillus
Одно из преобладающих животных R. pachyptila не может питаться частичками пищи, поскольку представляет собой просто замкнутый мешок без ротового, анального отверстий и пищеварительной системы. На переднем конце тела животного располагаются ярко окрашенные щупальца. В мешке заключены внутренние органы, самый крупный из них, занимающий почти всю полость тела, – трофосома, в которой обнаружено множество бактерий, окисляющих H2S, запасающих энергию в молекулах АТФ и использующих ее затем для фиксации CO2 в восстановительном пентозофосфатном цикле. Бактерии локализованы внутри клеток трофосомы. R. pachyptila получает от бактерий органические соединения, а в обмен поставляет им необходимые для осуществления хемолитоавтотрофного метаболизма вещества (CO2, O2, H2S), поглощая их из внешней среды щупальцами (темно-красный цвет обусловлен присутствием большого количества крови, богатой гемоглобином), откуда они по кровеносной системе переносятся в трофосому к бактериям. Таким образом, отношения между R. pachyptila и серобактериями – типичный пример внутриклеточного симбиоза.
Симбиозы, подобные описанному выше, обнаружены в других местах, богатых H2S, в том числе в мангровых и травяных соленых болотах, у мест просачивания нефти, в районах сброса сточных вод.
Большое экономическое значение
имеет косвенный результат жизнедеятельности
4Fe + 8H+ ® 4Fe2+ + 4H2
обычно образующаяся при этом пленка из молекулярного водорода предохраняет железо от дальнейшего разрушения. Однако в присутствии сульфатредуцирующих бактерий и при наличии в среде сульфатов происходит катодная деполяризация, и тогда железо окисляется даже в отсутствии кислорода:
4H2 + SO42- ® H2S + 2H2O + 2OH-
4Fe2+ + H2S + 2OH- +4H2O ® FeS + 3Fe(OH)2 + 6H+
в итоге:
4Fe + SO42- + 2H2O + 2H+ ® FeS + 3Fe(OH)2 .
Обусловленное такой коррозией повреждение
труб весьма убыточно.
Превращение соединений железа.
Химический элемент железо широко распространен в природе, встречается в виде органических и минеральных соединений, входит в состав животных и растительных организмов. Содержится в гемоглобине крови и дыхательных ферментах цитохромах, необходим для образования хлорофилла у растений, хотя и не входит в его состав. При недостатке железа у животных развивается анемия, растения теряют зеленую окраску. Железо бывает в форме нерастворимого окисного Fe3+ и растворимого закисного Fe2+.
Способность осаждать окислы железа на поверхности клеток присуща многим эубактериям, различающимися морфологическими и физиологическими признаками и принадлежащим к разным таксонометрическим группам. С.Н. Виноградский впервые термин «железобактерии» применил для обозначения организмов, использующих энергию окисления Fe2+ до Fe3+ для ассимиляции CO2, т. е. способных существовать хемолитоавтотрофно. Х. Молиш к железобактериям относил все организмы, откладывающие вокруг клеток окислы железа или марганца независимо от того, связан ли этот процесс с получением клеткой энергии.
Накопление окислов железа на поверхности бактериальных клеток –результат двух взаимосвязанных процессов: аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов па поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и цитоплазматической мембраной. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления железа может достигать величины 105 – 106.
Как известно, Fe2+ подвергается быстрому химическому окислению молекулярным кислородом при pH>5,5, что приводит к образованию нерастворимого Fe(OH)3. Последний вместе с Fe2+ неспецифически связывается клеточными кислыми экзополимерами. Подобный тип накопления железа не зависит от метаболической активности клеток.