Контрольная работа по "Микробиологии"

Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 18:49, контрольная работа

Описание работы

Рост – это согласованное увеличение количества всех химических компонентов, формирующих клеточные структуры. Рост клеток обычно сопровождается увеличением их массы и размеров. Однако эта закономерность наблюдается не всегда, так как в некоторых условиях клетки способны просто накапливать запасные или резервные вещества, т. е. масса может увеличиваться, но рост при этом не наблюдается.
В подходящей среде, к которой бактерии полностью адаптированы, они находятся в состоянии сбалансированного роста. В период сбалансированного роста удвоение биомассы сопровождается удвоением всех других учитываемых параметров популяции, например, количества белка, ДНК, РНК и внутриклеточной воды. Иными словами, культуры, растущие сбалансированно, сохраняют постоянный химический состав.

Содержание работы

1. Рост бактериальной клетки в периодической культуре. Кривая роста, фазы и закономерности роста……………………………….
2. Хемосинтез. Хемолитотрофные микроорганизмы, особенности их метаболизма. Значение в природе…………………………………………
3. Роль микробиологического фактора в самосогревании зерна. Участие и роль микроорганизмов в этом процессе………………………………………………
Список литературы…………………………………………..

Файлы: 1 файл

Микробиология.doc

— 195.00 Кб (Скачать файл)

Оренбургский  Государственный университет 

Уфимский филиал

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная работа №_________

 

По___________________________________________________

______________________________________________________


Студента______________________________________________


Ф.И.О. преподавателя___________________________________

 

Группа___________________

Шифр студента____________

Учебный год______________

 

 

 

 

 

 

 

 

 

Содержание

 

1. Рост бактериальной  клетки в периодической культуре. Кривая роста, фазы и закономерности роста……………………………….

2. Хемосинтез. Хемолитотрофные  микроорганизмы, особенности их  метаболизма. Значение в природе…………………………………………

3. Роль микробиологического  фактора в самосогревании зерна.  Участие и роль микроорганизмов  в этом процессе………………………………………………

Список литературы…………………………………………..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Рост бактериальной  клетки в периодической культуре. Кривая роста, фазы и закономерности  роста

Рост  – это согласованное увеличение количества всех химических компонентов, формирующих клеточные структуры. Рост клеток обычно сопровождается увеличением их массы и размеров. Однако эта закономерность наблюдается не всегда, так как в некоторых условиях клетки способны просто накапливать запасные или резервные вещества, т. е. масса может увеличиваться, но рост при этом не наблюдается.

В подходящей среде, к которой бактерии полностью адаптированы, они находятся в состоянии сбалансированного роста. В период сбалансированного роста удвоение биомассы сопровождается удвоением всех других учитываемых параметров популяции, например, количества белка, ДНК, РНК и внутриклеточной воды. Иными словами, культуры, растущие сбалансированно, сохраняют постоянный химический состав.

Скорость  роста может снижаться по следующим  причинам: из-за недостатка субстрата, вследствие высокой плотности бактериальной популяции, при низком парциальном давлении кислорода или по причине накопления токсичных продуктов обмена. Все эти факторы обусловливают переход к стационарной фазе. Переход в стационарную фазу включает период несбалансированного роста, когда компоненты клеток синтезируются с различными скоростями. Соответственно, и содержание отдельных химических веществ в клетках на разных стадиях отличается.

В лабораторных и промышленных условиях используют два основных способа культивирования микроорганизмов: периодическое и непрерывное.

Периодическая культура - это популяция клеток в ограниченном жизненном пространстве. Рост бактерий в периодической культуре происходит до тех пор, пока содержание какого-нибудь из необходимых им компонентов питательной среды не достигнет минимума, после чего рост прекращается.

Зависимость концентрации жизнеспособных клеток при периодическом культивировании от длительности инкубирования описывается характерной кривой, которая имеет S-образную форму (рис. 1). На кривой можно различить несколько фаз роста, сменяющих друг друга в определенной последовательности: лаг-фазу; логарифмическую фазу; стационарную фазу; фазу отмирания.

Рис. 1. Основные фазы кривой роста периодической культуры микроорганизмов

 

Лаг-фаза охватывает промежуток времени между инокуляцией бактерий и достижением ими максимальной скорости деления.  В клетках бактерий в этот период идут в основном процессы, связанные с приспособлением их к условиям культивирования. Происходит быстрое увеличение количества РНК (в 8–12 раз).

Продолжительность фазы определяется следующими факторами:

1) начальными условиями культивирования вносимого посевного материала;

2) возрастом посевного материала: чем старше культура, которую используют для инокуляции новой питательной среды, тем большее время занимает лаг-фаза.

Во время лаг-фазы деления  клеток не происходит, отмечаются лишь процессы, которые подготавливают клетку к размножению. Лаг-фаза переходит в начальную фазу размножения, когда клетки начинают делиться с постепенно возрастающей скоростью.

Фаза логарифмического (экспоненциального) роста характеризуется постоянной максимальной скоростью деления клеток и скоростью роста. Для различных видов бактерий эти величины могут варьировать в значительных пределах. Например, бактерии E. coli при 37 оС делятся примерно каждые 20 мин, а бактерии родов Nitrosomonas и Nitrobacter – 5–10 ч. В итоге культуры бактерии E. coli вступают в стационарную фазу при концентрации клеток 2–5 . 109/мл.

Характеристика клеток во время логарифмической фазы: 1) все клетки в популяции имеют приблизительно одинаковый размер; 2) содержат максимальное количество РНК, белка, и количество их постоянно; 3) клетки наиболее жизнеспособны; 4) обладают высокой биохимической активностью.

Стационарная  фаза наступает тогда, когда число жизнеспособных клеток достигает максимума и не увеличивается, так как скорость размножения бактерий равна скорости их отмирания. В связи с тем, что скорость роста определяется концентрацией субстрата, то еще до его полного использования начинает снижаться и скорость роста, поэтому переход от логарифмической фазы к стационарной происходит постепенно.

Химический состав клеток зависит от фактора, лимитирующего  рост. По сравнению с логарифмической фазой роста культур, клетки в стационарной фазе меньше по размеру, содержат меньше РНК, более устойчивы к различного рода воздействиям. В этот период в клетках или в среде культивирования нередко накапливаются продукты вторичного метаболизма.

Продолжительность этой фазы может быть от нескольких часов до нескольких дней в зависимости от вида микроорганизма.

В стационарной фазе роста  поведение клеток в бактериальной  популяции может регулировать явление, которое получило название апоптоз. Суть его сводится к тому, что при исчерпании питательного субстрата голодающая популяция бактерий разделяется на две субпопуляции, одна из которых погибает и подвергается автолизу, клетки же другой популяции, используя продукты автолиза как субстрат, продолжают размножаться.

В фазе отмирания происходит логарифмическое снижение числа живых клеток. Скорость отмирания бактерий существенно варьирует в зависимости от условий среды и физиологических особенностей организма. Например, энтеробактерии отмирают медленно в отличие от некоторых видов бактерий рода Bacillus, скорость гибели которых происходит быстро. Причины отмирания клеток могут быть разными: накопление органических кислот, автолиз, накопление антибиотиков, бактериоцинов и др.

Рассмотрим  процесс образования метаболитов на разных этапах роста клетки.

В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами. Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов-сверхпродуцентов.

В фазе замедления роста и в стационарной фазе некоторые  микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном актиномицеты, грибы и спорообразующие бактерии. Промышленное получение вторичных метаболитов представляет огромный интерес, поскольку эти метаболиты – биологически активные вещества: например, антибиотики, гормоны, бактериоцины и т.д.

Приведенные сведения о метаболитах указывают на важность получения знаний об особенностях отдельных фаз при периодическом культивировании.

 

 

 

 

 

 

 

 

 

2. Хемосинтез. Хемолитотрофные микроорганизмы, особенности  их метаболизма. Значение в  природе

Хемосинтез (от хемо... и синтез), правильнее — хемолитоавтотрофия, тип питания, свойственный некоторым бактериям, способным усваивать COкак единственный источник углерода за счёт энергии окисления неорганических соединений. Открытие хемосинтеза в 1887 (Виноградский С. Н.) существенно изменило представления об основных типах обмена веществ у живых организмов. В отличие от фотосинтеза, при хемосинтезе используется не энергия света, а энергия, получаемая при окислительно-восстановительных реакциях, которая должна быть достаточна для синтеза аденозинтрифосфорной кислоты (АТФ) и превышать 10 ккал/моль.

Бактерии, способные к хемосинтезу не являются единой в таксономическом отношении группой, а систематизируются в зависимости от окисляемого неорганического субстрата. Среди них встречаются микроорганизмы, окисляющие водород, окись углерода, восстановленные соединения серы, железо, аммиак, нитриты, сурьму. 

Водородные бактерии — наиболее многочисленная и разнообразная группа хемосинтезирующих организмов; осуществляют реакцию

6H+ 2O+ CO= (CH2O) + 5H2O, где (CH2O) — условное обозначение образующихся органических веществ. По сравнению с др. автотрофными микроорганизмами характеризуются высокой скоростью роста и могут давать большую биомассу. Эти бактерии способны также расти на средах, содержащих органические вещества, т. е. являются миксотрофными, или факультативно хемоавтотрофными бактериями. Близки к водородным бактериям карбоксидобактерии, окисляющие CO по реакции 25CO + 12O+ H2O + 24CO+ (CH2O). Тионовые бактерии окисляют сероводород, тиосульфат, молекулярную серу до серной кислоты. Некоторые из них (Thiobacillus ferrooxidans) окисляют сульфидные минералы, а также закисное железо. Способность к хемосинтезу у разнообразных водных  серобактерий  остаётся недоказанной. Нитрифицирующие бактерии окисляют аммиак до нитрита (1-я стадия нитрификации) и нитрит в нитрат (2-я стадия). В анаэробных условиях Х. наблюдается у некоторых денитрифицирующих бактерий, окисляющих водород или серу, но часто они нуждаются в органическом веществе для биосинтеза (литогетеротрофия). Описан хемосинтез у некоторых строго анаэробных метанообразующих бактерий по реакции 4H+ CO= CH+ 2H2O.

Биосинтез органических соединений при хемосинтезе осуществляется в результате автотрофной ассимиляции CO(цикл Калвина) точно так же, как при фотосинтезе. Энергия в виде АТФ получается от переноса электронов по цепи дыхательных ферментов, встроенных в клеточную мембрану бактерий (см. Окислительное фосфорилирование). Некоторые окисляемые вещества отдают электроны в цепь на уровне цитохрома с, что создаёт дополнительный расход энергии для синтеза восстановителя. В связи с большим расходом энергии хемосинтезирующие бактерии, за исключением водородных, образуют мало биомассы, но окисляют большое количество неорганических веществ. В биосфере хемосинтезирующие бактерии контролируют окислительные участки круговорота важнейших элементов и поэтому представляют исключительное значение для биогеохимии. Водородные бактерии могут быть использованы для получения белка и очистки атмосферы от COв замкнутых экологических системах. Морфологически хемосинтезирующие бактерии весьма разнообразны, хотя большинство из них относится к псевдомонадам, они имеются среди почкующихся и нитчатых бактерий, спирилл, лептоспир, коринебактерий.

Литотрофные Микроорганизмы используют неорганические вещества в качестве окисляемых субстратов — доноров электронов. Различают фотолитотрофные и хемолитотрофные микроорганизмы. У фотолитотрофных микроорганизмов окисляемый субстрат — соединения серы (пурпурные и зелёные бактерии, некоторые цианобактерии) или вода (цианобактерии, микроформы водорослей) служит источником восстановителя, а энергию они получают в результате поглощения света. У хемолитотрофных микроорганизмов окисляемый неорганический субстрат - источник и энергии, и восстановителя. В анаэробных условиях окислителем могут быть нитрат, нитрит и окислы азота (денитрифицирующие бактерии), сера и (или) сульфат (сульфат - восстанавливающие бактерии), углекислота (метан - и ацетатобразующие бактерии), фумарат и некоторые другие соединения. литотрофные микроорганизмы играют важнейшую роль в природе, замыкая циклы биогенных элементов. Большое значение литотрофные микроорганизмы имеют в геологии. Например, тионовые бактерии обусловливают выщелачивание металлов из горных пород, сульфатвосстанавливающие бактерии участвуют в формировании осадочных отложений серы.

Метаболизмы микроорганизмов.

В зависимости от используемого  источника энергии для получения АТФ микроорганизмы делят на фототрофов (используют энергию света) и хемотрофов (используют энергию химических реакций).

Процесс образования  АТФ называется фосфорилированием; он осуществляется в митохондриях (у  эукариот) и ферментных системах, локализованных на цитоплазмаческой мембране (у прокариот). Механизм образования, АТФ у разных групп микроорганизмов неодинаков. Различают субстратное, окислительное и фотофосфорилирование. Любой тип фосфорилирования обязательно сопряжен с переносом электронов в ходе окислительно - восстановительных реакций энергетического обмена. При этом одни микроорганизмы в качестве доноров электронов (водорода) используют неорганические, другие - органические соединения. Соответственно первые называются литотрофами, вторые - органотрофами.

Таким образом, принимая во внимание тип питания (авто- или  гетеротрофное), природу донора электронов источник энергии (свет или химическая реакция), возможные сочетания вариантов  конструктивного и энергетического  обменов можно представить в виде следующей схемы.

Каждый из представленных вариантов характеризует определенный тип метаболизма. Большинство микроорганизмов, обитающих в природных источных водах и играющих важную роль в  формировавании качества воды и ее очистке, относятся к восьмому и первому типам метаболизма. В связи с этим при дальнейшем изложении материала именно им уделено основное внимание.

Информация о работе Контрольная работа по "Микробиологии"