Автор работы: Пользователь скрыл имя, 10 Декабря 2015 в 12:21, курсовая работа
Цель курсового проекта. Изучить материалы по генетической инженерий растении и определить ее возможности и перспективы.
Задачи:
Выделить основное направление генетической инженерии растении на сегодняшний день.
Сравнить достижения отечественной генной инженерии с основными направлениями генной инженерии в целом.
Введение…………………………………………………………………………...3
I Трансформация растений……………………………………………………….5
1.1. Трансформация растительного генома……………………………………..6
1.2. Трансформация растений с помощью агробактерий………………............8
II Генетический материал в растений…………………………………………..10
2.1. Введение генов в клетки растений………………………………………...10
2.2. Источники генов для улучшения растений………………………………..11
2.3. Экспрессия генетического материала в трансгенных растениях………...12
III Ti- и Ri-плазмиды…………………………………………………………….16
3.1. Характеристика Ti- и Ri-плазмид…………………………………………………………….16
3.2. Введение ДНК в растения с помощью Ti- и Ri-плазмид………………...20
IV Достижения генной инженерии растений………………………………………………….23
4.1. Улучшение качества запасных белков…………………………………….24
4.2. Жиры и полисахариды...................................................................................25
4.3. Создание гербицидоустойчивых растений………………………………..26
4.4. Повышение устойчивости растений к стрессовым условиям……………31
4.5. Повышение эффективности биологической азотфиксации и повышение эффективности фотосинтеза…………………………………………………….32
4.6. Получение растений с новыми свойствами……………………………….34
V Проблемы безопасности генетической инженерий растений……………...36
5.1. Проблемы биобезопасности трансгенных растений……………………...36
5.2. Безопасность генетически модифицированных растений………………..38
Заключение……………………………………………………………………….40
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ШАКАРИМА ГОРОДА СЕМЕЙ
Курсовой проект
Тема: «Генная инженерия растений»
Подготовил: студент группы АГ-214 ___________ Мукашев К.
Руководитель:
__________ Байгаринова
Р.М. ст. преподаватель
Члены комиссий: _________ Есенгулова Н.Ж. и.о.ассоц. профессора
Семей
2014
Содержание
Введение…………………………………………………………
I Трансформация растений……………………………………………………….
1.1. Трансформация растительного генома……………………………………..6
1.2. Трансформация растений с
помощью агробактерий………………....
II Генетический материал в растений…………………………………………..10
2.1. Введение генов
в клетки растений…………………………………
2.2. Источники генов для
улучшения растений………………………………
2.3. Экспрессия генетического
материала в трансгенных
III Ti- и Ri-плазмиды…………………………………………………
3.1. Характеристика Ti- и Ri-плазмид……………………………………………………
3.2. Введение ДНК в растения с помощью Ti- и Ri-плазмид………………...20
IV Достижения генной инженерии растений………………………………………………….23
4.1. Улучшение качества
запасных белков…………………………………….
4.2. Жиры и полисахариды..................
4.3. Создание гербицидоустойчивых растений………………………………..26
4.4. Повышение устойчивости растений к стрессовым условиям……………31
4.5. Повышение эффективности
биологической азотфиксации и повышение
эффективности фотосинтеза…………………………………………………
4.6. Получение растений с новыми свойствами……………………………….34
V Проблемы безопасности генетической инженерий растений……………...36
5.1. Проблемы биобезопасности
трансгенных растений……………………..
5.2. Безопасность генетически
Заключение……………………………………………………
Введение
Традиционные методы селекции, основанные, главным образом, на половой гибридизации и отборе, позволяют получать новые генотипы растений. Они обеспечивают получение огромного числа сортов и гибридов сельскохозяйственных культур, в том числе шедевров селекции. Выдающиеся селекционеры России (Лукьяненко, Пустовойт, Ремесло, Гаркавый, Кириченко, Калиненко и др.) внесли решающий вклад в эти достижения. Классические методы селекции и в дальнейшем будут составлять основу получения новых сортов. [1] Генно-инженерные манипуляции позволяют решать ряд важных задач по повышению устойчивости новых форм, линий, сортов и гибридов сельскохозяйственных растений к патогенам и сокращению продолжительности выведения новых сортов.
Технология рекомбинантных ДНК позволяет выделять гены как прокариотического, так и эукариотического происхождения, переносит этот ген (или несколько генов) в хромосомы реципиентного растения обеспечивать его экспрессию. Применение этой технологии делает поиск более целенаправленным и значительно расширяет возможности манипулирования генетическим аппаратом.
Важным преимуществом растений по сравнению с животными является возможность получения целого растения из одной клетки, основанная на свойстве тотипотентности. Результаты генетической инженерии растений во многом зависят от разработки методов культуры тканей, особенно методик регенерации различных растений.
Технология генетической инженерии состоит из следующих основных этапов получения трансгенных растений:
1) выбор гена и его клонирование;
2) подбор генотипа растения-реципиента;
3) введение гена и его экспрессия в геноме растения-реципиента;
4) регенерация трансформированных клеток и отбор трансгенных растений.
Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растении (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.
Нынешний этап развития генетической инженерии растении получил название «Метаболическая инженерия». При этом ставится задача не только улучшить или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие лекарственные белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое.
Актуальность курсового проекта. Генная инженерия во все времена пользовалась большим спросом. Правильное использование достижений генной инженерии позволит повысить эффективность выращивания сельскохозяйственных растений. Наука с использованием инновационных технологий поможет сделать выращивание растений экономически эффективным.
Цель курсового проекта. Изучить материалы по генетической инженерий растении и определить ее возможности и перспективы.
Задачи:
I Трансформация растений.
Трансгенным (или генетически модифицированным) называется растение, в геном которого методами генетической инженерии перенесены гены (их называют „трансгенами“) из других организмов. Процесс переноса называется генетической трансформацией. Основными преимуществами такой технологии по сравнению с традиционной селекцией являются: возможность переноса всего одного гена, что практически не затрагивает исходный генотип; возможность придания признаков, которые нельзя перенести путём скрещивания с близкородственными видами; значительное ускорение процесса получения новых генотипов Наиболее широко используемый метод трансформации — агробактериальный был разработан на основе природного процесса. Почвенная бактерия Agrobacterium tumefaciens способна инфицировать двудольные растения, вызывая опухоли — корончатые галлы. Как выяснилось, при этом происходят перенос и встраивание в растительный геном двух групп генов: продукты одних вмешиваются в нормальный метаболизм растения и способствуют разрастанию опухоли, а продукты других синтезируют опины, вещества, ненужные растению, но используемые в пищу бактериями. Учёные модифицировали агробактерии таким образом, что они вместо собственных переносят в растения гены, нужные человеку. Впоследствии был разработан ряд других методов трансформации растительных клеток, из которых наибольшее распространение приобрел биобаллистический. Он используется чаще всего для генетической модификации однодольных растений, нечувствительных к агробактериям. В специальных установках микрочастицы золота или вольфрама с нанесённой на них ДНК ускоряют при помощи сжатого гелия, и они проникают в ДНК клеток мишени. Признаки, которые возможно придать с помощью генной инженерии, весьма разнообразны и в основном ограничены только наличием соответствующих генов. Очень условно их можно разделить на три группы. К первой относятся признаки, интересные производителям: устойчивость к различным факторам окружающей среды — гербицидам, болезням, вредителям, засухе, засолению, улучшение минерального питания, повышение укореняемости. Вторая группа признаков представляет интерес непосредственно для потребителей — модификация вкуса и аромата плодов, увеличение продолжительности их хранения, изменение окраски цветков, бессемянность, улучшение питательной ценности растений. В третью группу входят растения–„биофабрики“, способные синтезировать вакцины, ферменты, биополимеры и другие полезные вещества. ДНК бактерий существуют не только в виде хромосом, но и в виде маленьких кольцевых молекул (плазмид). Бактерии Agrobacterium tumefaciens помимо прочих содержат плазмиды, вызывающие опухоли (Ti-плазмиды). На такой плазмиде среди прочих генов имеется так называемая область Т-ДНК, содержащая гены, отвечающие за образование опухоли на растениях и синтез опинов. Именно этот кусочек плазмиды агробактерии встраивают в ДНК растений. Выяснилось, что агробактерии в принципе способны переносить в растения любую ДНК, которая расположена в этом месте плазмиды. Поэтому в плазмидах, используемых в генно-инженерных целях, природные гены заменяют любыми другими, представляющими интерес для человека. Как правило, это два-три гена: целевой, который придаёт, например, устойчивость к насекомым; селективный, который придаёт устойчивость к определённым веществам (чаще всего — антибиотикам), что позволяет трансформированной клетке расти в питательной среде с антибиотиками, в то время как нетрансформированные клетки в ней гибнут; и иногда — репортёрный ген, который позволяет качественно определить трансформированную клетку, например, по окрашиванию или свечению в ультрафиолетовом свете. В суспензию агробактерий, содержащих плазмиды с нужными генами, добавляют органы или ткани растений (экспланты), из которых проще всего регенерировать целые растения (чаще всего используются листья). Этот этап называется кокультивацией. Во время кокультивации агробактерии с помощью vir-белков переносят участок Ti-плазмиды и встраивают его в растительную ДНК. Затем растительную ткань помещают на питательную среду, содержащую антибиотики. В этой среде выживают только те клетки, в которые агробактерии перенесли ген, придающий устойчивость к антибиотикам, то есть трансформированные. Условия и состав среды подобраны таким образом, что трансформированные клетки активно размножаются, образуя неорганизованную массу делящихся клеток (каллус), из которой регенерируют трансгенные растения. Полученные растения размножают и подвергают различным анализам сначала в пробирке, а потом — на полях и в теплицах.
1.1. Трансформация растительного генома.
Генетическая конструкция, вводимая в растительную клетку обычно включает: белок-кодирующую структурную последовательность, сигнальные элементы трансляции и транскрипции, а также маркерные гены.
Наиболее важными из регуляторных последовательностей являются проксимальный участок промотора, связывающий РНК-полимеразу; участок, кодирующий 5'-конец мРНК, необходимый для связывания с рибосомой и инициации трансляции, и эукариотический сигнал полиаденилирования на 3'-конце мРНК. Среди эукариотических организмов эти конститутивные сигнальные элементы оказались, к счастью, высококонсервативными и достаточно универсальными, так что растительные клетки в основном правильно экспрессируют чужеродные гены не только растений других видов, но и млекопитающих, дрожжей и других эукариот.
Однако для генов бактериального происхождения необходима замена их конститутивных сигнальных элементов на соответствующие эукариотические. Помимо этого, для лучшей экспрессии гена на уровне трансляции мРНК желательно приблизить набор кодонов к типичному для растения. Обычно для этого посредством направленных точечных мутаций заменяют "редкие" кодоны на синонимичные "частые", что не сказывается на первичной структуре белка. В результате экспрессия гена может быть усилена до 300 раз.[2]
Иногда в структурной части генов прокариотического происхождения могут присутствовать какие-либо нежелательные сигнальные последовательности, например, узнаваемые на уровне мРНК ферментами сплайсинга или деградации, либо ферментами модификации на уровне белка. Наличие таких скрытых ("криптических") сигналов ведет к резкому снижению экспрессии гена в растении, поэтому их обычно удаляют также путем точечных замен оснований.
Минимальный промотор, связывающий РНК-полимеразу, как правило, недостаточен для обеспечения заметного, а тем более тканеспецифичного уровня транскрипции. Для усиления экспрессии встроенного гена и придания ей заданных характеристик используют полноразмерные промоторы, включающие энхансеры (усилители) и (или) фактор-зависимые цис-элементы. Это приводит к тому, что подготовленный для трансформации ген, как правило, является химерным, т.е. включает фрагменты ДНК из одного вида, соединенные с фрагментами ДНК из другого вида.
Набор известных к настоящему дню промоторов достаточно разнообразен и постоянно пополняется. Конститутивные промоторы применяются для наработки существенных количеств продукта гена во всем растении. Для двудольных растений такими эффективными промоторами являются, например, 35S-промотор вируса мозаичности цветной капусты (CaMV) и nos-промотор гена нопалин-синтазы агробактерий; для однодольных - промоторы гена алкогольдегидрогеназы кукурузы (Adh) и гена актина 1 риса (Act).
Помимо конститутивных, известно большое число специфических промоторов, которые активны лишь в отдельных органах, тканях или клетках, либо на отдельных стадиях онтогенеза растения. Примером может служить промотор гена пататина картофеля, работающий практически только в клубнях. Имеются также промоторы, активность которых проявляется в листьях, корнях, меристемах и других местах специфической локализации. Интенсивно изучаются и используются также индуцибельные промоторы, которые активируются лишь при определенных условиях: температуры, освещения, концентрации фитогормонов и т.д.
Многие из таких промоторов достаточно универсальны, например, некоторые промоторы генов теплового шока. В частности, промотор гена hsp70 из дрозофилы равно эффективен в клетках растений. Особый интерес представляют промоторы, индуцируемые низкомолекулярными химическими эффекторами, часто не свойственными растениям. В зависимости от типа промотора, индукторами могут служить тетрациклин, дексаметазон, бензотиадиазол, этанол, ионы меди и другие соединения. Эти промоторы очень важны для фундаментальных исследований трансгенных растений, позволяя четко дифференцировать первичные и вторичные эффекты изучаемого гена и тем самым прояснить его истинную биологическую функцию. Они перспективны также для биотехнологии, так как позволяют вызвать экспрессию гена в заданный период, когда она уже либо не препятствует нормальному росту и развитию растения, либо не вызывает иных отрицательных последствий.
Регулируемые извне индуцибельные промоторы, контролирующие соответствующие гены, могут способствовать одновременному прохождению растениями основных стадий онтогенеза (переход к цветению, опадение листьев и др.), что важно для практики сельского хозяйства. Есть промотор, индуцирующийся при механическом стрессе (поранении) или при обработке растений элиситорами. Использование такого промотора, соединенного с целевым геном, дает возможность выращивать трансгенные растения как обычные вплоть до стадии уборки урожая, а далее срезка растений индуцирует экспрессию целевого гена, продукт которого накапливается в собранной биомассе. [3]
1.2. Трансформация растений с помощью агробактерий.
Одной из основных проблем при получении трансгенных растений был способ введения чужеродных генов в хромосомы растений, т.е. трансформация растительных клеток. Значительный прорыв был сделан при открытии возможности использования природной системы трансформации растений Тi-плазмидами почвенных агробактерий.
Ранее было известно, что некоторые виды почвенных бактерий (Agrobacteria) могут заражать двудольные растения и вызывать при этом образование специфических опухолей-корончатых галлов. Опухоли состоят из недифференцированных клеток, интенсивно делящихся и растущих в месте заражения. При культивировании in vitro клетки опухоли могут расти в отсутствие гормонов, необходимых для роста нормальных растительных клеток. Если после заражения все агробактерии инактивировать добавлением антибиотика, то клетки корончатых галлов сохраняют способность к неконтролируемому делению. Итак, присутствие агробактерий необходимо только для индицирования образования опухоли. Опухолевые клетки начинают синтезировать необычные для растения аминокислоты-опины (производные аргинина), которые используются агробактериями в качестве источника азота и углерода. Таким образом, при заражении растения агробактерий происходит перестройка метаболизма трансформированных растительных клеток, и они начинают синтезировать соединения, необходимые только для бактерий.