Планирование и финансирование мероприятий по охране труда

Автор работы: Пользователь скрыл имя, 18 Февраля 2015 в 12:30, контрольная работа

Описание работы

Мероприятия по охране труда оформляются разделом в коллективном договоре и соглашении по охране труда с учетом предложений Рострудинспекции и других Федеральных органов надзора, работодателей, работников, состоящих с работодателями в трудовых отношениях, и иных уполномоченных органов на основе анализа причин производственного травматизма и профессиональных заболеваний, по результатам экспертизы технического состояния производственного оборудования, а также с учетом работ по обязательной сертификации постоянных рабочих мест на производственных объектах на соответствие требованиям охраны труда.

Файлы: 1 файл

5609-1.rtf

— 1.40 Мб (Скачать файл)

Отношение максимальной освещенности к минимальной не должно превышать для работ I-III разрядов при люминесцентных лампах 1,3, при других источниках света - 1,5, для работ разрядов IV-VII - 1,5 и 2,0 соответственно.

Неравномерность освещенности допускается повышать до 3,0 в тех случаях, когда по условиям технологии светильники общего освещения могут устанавливаться только на площадках, колоннах или стенах помещения.

В производственных помещениях освещенность проходов и участков, где работа не производится, должна составлять не более 25 % нормируемой освещенности, создаваемой светильниками общего освещения, но не менее 75 лк при разрядных лампах и не менее 30 лк при лампах накаливания.

В цехах с полностью автоматизированным технологическим процессом следует предусматривать освещение для наблюдения за работой оборудования, а также дополнительно включаемые светильники общего и местного освещения для обеспечения необходимой освещенности при ремонтно-наладочных работах.

Показатель ослепленности не ограничивается для помещений, длина которых не превышает двойной высоты подвеса светильников над полом, а также для помещений с временным пребыванием людей и для площадок, предназначенных для прохода или обслуживания оборудования.

Для местного освещения рабочих мест следует использовать светильники с непросвечивающими отражателями. Светильники должны располагаться таким образом, чтобы их светящие элементы не попадали в поле зрения работающих на освещаемом рабочем месте и на других рабочих местах.

Местное освещение рабочих мест, как правило, должно быть оборудовано регуляторами освещения.

Основной задачей светотехнических расчетов является: для искусственного -- требуемой мощности электрической осветительной установки для создания заданной освещенности.

При проектировании искусственного освещения необходимо выбрать тип источника света, систему освещения, вид светильника; наметить целесообразную высоту установки светильников и размещения их в помещении; определить число светильников и мощность ламп, необходимых для создания нормируемой освещенности на рабочем месте, и в заключение проверить намеченный вариант освещения на соответствие его нормативным требованиям.

Расчет общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента использования светового потока. Световой поток (лм) одной лампы или группы люминесцентных ламп одного светильника

где Ен -- нормируемая минимальная освещенность по СНиП 23-05--95, лк; S -- площадь освещаемого помещения, м2; z -- коэффициент неравномерности освещения; обычно г= 1,1...1,2; k3 -- коэффициент запаса, зависящий от вида технологического процесса и типа применяемых источников света; обычно 1,3... 1,8; n--число светильников в помещении; hи-- коэффициент использования светового потока.

Коэффициент использования светового потока, давший название методу расчета, определяют по СНиП 23-05--95 в зависимости от типа светильника, отражательной способности стен и потолка, размеров помещения, определяемых индексом помещения

где А и В -- длина и ширина помещения в плане, м; Н-высота подвеса светильников над рабочей поверхностью, м.

По полученному в результате расчета световому потоку по ГОСТ 2139--79* и ГОСТ 6825--91 выбирают ближайшую стандартную лампу и определяют необходимую электрическую мощность. При выборе лампы допускается отклонение светового потока от расчетного в пределах 10...20 %.

Для поверочного расчета местного освещения, а также для расчета освещенности конкретной точки наклонной поверхности при общем локализованном освещении применяют точечный метод. В основу точечного метода положено уравнение

где EА -- освещенность горизонтальной поверхности в расчетной точке А, лк; Iα-- сила света в направлении от источника к расчетной точке А; определяется по кривой распределения светового потока выбираемого светильника и источника света; α -- угол между нормалью к поверхности, которой принадлежит точка, и направлением вектора силы света в точку А; r -- расстояние от светильника до точки А, м.

Приборами для измерения освещенности являются: люксметры «Аргус - 01», Ю-117.

Для измерения яркости - фотометр ФПЧ, а также люксметр яркомер ТКА - 04/3

Назначение и принцип действия защитного зануления, а также необходимость повторного заземления нулевого провода.

Требования к устройству защитного заземления и зануления электрооборудования определены ПУЭ, в соответствии с которыми они должны устраиваться при номинальном напряжении 380 В и выше переменного и 440 В и выше постоянного тока. В условиях работ в помещениях с повышенной опасностью и особо опасных они должны, выполняться в установках с напряжением питания > 42 В переменно и > 110 В постоянного тока.

Особо опасными помещениями является большая часть производственных помещений, в том числе все цехи машиностроительных заводов, испытательные станции,  гальванические цехи, мастерские и т. п. К таким же помещениям относятся и участки работ на земле под открытым небом или под навесом.

Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека, которые могут оказаться под напряжением в результате повреждения изоляции.

Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей электроустановок с землей или ее эквивалентом (водопроводными трубами и т. п.).

Схема защитного заземления представлена на рис. 1.

Рис. 1. Схема защитного заземления в сети с изолированной нейтралью:

1-- трансформатор; 2 -- сеть; 3 -- корпус токоприемника; 4-- обмотка электродвигателя; 5--заземлитель; 6--сопротивление заземления (условно)

При пробое изоляции токоведущих частей на корпус, изолированный от земли, он оказывается под фазовым напряжением Uф.

При наличии заземления вследствие стекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В установках 380/220 В она должна быть не более 4 Ом, в установках 220/127 В--не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 10 Ом.

В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители. Возможно применение железобетонных фундаментов промышленных зданий и сооружений. При отсутствии естественных заземлителей допускается применение переносных заземлителей, например ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100...200 мм над поверхностью земли, к которым привариваются соединительные проводники.

Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами.

Рис. 2. Схема зануления в трехфазной четырехпроводной сети с заземленной нейтралью: 1-- трансформатор; 2 -- сеть; 3 -- предохранитель; 4-- обмотка электродвигателя; 5-- корпус электродвигателя; 6-- зануляющий проводник; 7-- нулевой защитный проводник; 8 - сопротивление заземления нейтрали

Зануление состоит в преднамеренном соединении металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником (рис. 2). При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для «выбивания» предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается.

Предусматривается повторное заземление нулевого проводника на случай обрыва нулевого провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в заземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом, образуется контур короткого замыкания.

Опишите процесс горения. Пожарная опасность веществ.

Пожар - это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического, материального и другого вреда.

Горение - это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя (обычно кислород воздуха) и источника загорания (импульса). Окислителем может быть не только кислород, но и хлор, фтор, бром, йод, окислы азота и т.д.

В зависимости от свойств горючей смеси горение бывает гомогенным и гетерогенным. При гомогенном горении исходные вещества имеют одинаковое агрегатное состояние (например, горение газов). Горение твердых и жидких горючих веществ является гетерогенным.

Горение дифференцируется также по скорости распространения пламени и в зависимости от этого параметра может быть дефлаграционным (порядка десятка метров в секунду), взрывным (порядка сотни метров в секунду) и детонационным (порядка тысячи метров в секунду). Пожарам свойственно дефлаграционное горение.

Процесс возникновения горения подразделяется на несколько видов.

Вспышка - быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Самовозгорание - явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - самовозгорание, сопровождающееся появлением пламени.

Возникновение горения веществ и материалов при воздействии тепловых импульсов с температурой выше температуры воспламенения характеризуется как возгорание, а возникновение горения при температурах ниже температуры самовоспламенения относится к процессу самовозгорания.

При оценке пожарной безопасности веществ и материалов необходимо учитывать их агрегатное состояние. Поскольку горение, как правило, происходит в газовой среде, то в качестве показателей пожарной опасности необходимо учитывать условия, при которых образуется достаточное для горения количество газообразных горючих продуктов.

Основными показателями пожарной опасности, определяющими критические условия возникновения и развития процесса горения, являются температура самовоспламенения и концентрационные пределы воспламенения.

Температура самовоспламенения характеризует минимальную температуру вещества или материала. при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Минимальная концентрация горючих газов и паров в воздухе при которой они способны загораться и распространять пламя, называется нижним концентрационным пределом воспламенения; максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения. Область составов и смесей горючих газов и паров с воздухом, лежащих между нижним и верхним пределами воспламенения, называется областью воспламенения.

Концентрационные пределы воспламенения не постоянны и зависят от ряда факторов. Наибольшее влияние на пределы воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.

Пожароопасность веществ характеризуется линейной (выраженной в см/с) и массовой (г/c) скоростями горения (распространения пламени) и выгорания (г/м2*с), а также предельным содержанием кислорода, при котором еще возможно горение. Для обычных горючих веществ (углеводородов и их производных) это предельное содержание кислорода составляет 12-14%, для веществ с высоким значением верхнего предела воспламенения (водород, сероуглерод, окись этилена и др.) предельное содержание кислорода составляет 5% и ниже.

Помимо перечисленных параметров для оценки пожарной опасности важно знать степень горючести (сгораемости) веществ. В зависимости от этой характеристики вещества и материалы делят на горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

К горючим относятся такие вещества и материалы, которые при воспламенении посторонним источником продолжают гореть и после его удаления. К трудногорючим относят такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия импульса; негорючими являются вещества и материалы, не воспламеняющиеся даже при воздействии достаточно мощных импульсов или мощных источников зажигания.

Горючие вещества могут быть в трех агрегатных состояниях: жидком, твердом и газообразном. Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ. Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

Информация о работе Планирование и финансирование мероприятий по охране труда