Автор работы: Пользователь скрыл имя, 18 Февраля 2011 в 18:42, реферат
Хроматография - это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Метод основан на различном распределении веществ между двумя несмешивающимися фазами - подвижной и неподвижной.
Введение 3
1 Классификация методов хроматографии
5
2 Газовая хроматография
11
2.1 Газоадсорбционная хроматография
11
2.2 Газожидкостная хроматография
12
3 Аппаратурное оформление процесса
16
4 Области применения газовой хроматографии
20
Заключение
22
Список литературы
23
Носители неподвижных жидких фаз. Твердые носители для диспергирования неподвижной жидкой фазы в виде однородной тонкой пленки должны быть механически прочными с умеренной удельной поверхностью (20м2/г), небольшим и одинаковым размером частиц, а также быть достаточно инертными, чтобы адсорбция на поверхности раздела твердой и газообразной фаз была минимальной. Самая низкая адсорбция наблюдается на носителях из силанизированного хромосорба, стеклянных гранул и флуоропака (фторуглеродный полимер). Кроме того, твердые носители не должны реагировать на повышение температуры и должны легко смачиваться жидкой фазой. В газовой хроматографии хелатов в качестве твердого носителя чаще всего используют силанизированные белые диатомитовые носители — диатомитовый кремнезем, или кизельгур. Диатомит — это микроаморфный, содержащий воду, диоксид кремния. К таким носителям относят хромосорб W, газохром Q, хроматон N и др. Кроме того, используют стеклянные шарики и тефлон.
Химически
связанные фазы. Часто используют модифицированные
носители, ковалентно - связанные с жидкой
фазой. При этом стационарная жидкая фаза
более прочно удерживается на поверхности
даже при самых высоких температурах колонки.
Например, диатомитовый носитель обрабатывают
хлорсиланом с длинноцепочечным заместителем,
обладающим определенной полярностью.
Химически связанная неподвижная фаза
более эффективна.
Газовая
хроматография—наиболее разработанный
в аппаратурном оформлении хроматографический
метод. Прибор для газохроматографического
разделения и получения хроматограммы
называется газовым хроматографом.
Схема установки наиболее простого газового
хроматографа приведена на рис. 6. Она состоит
из газового баллона, содержащего подвижную
инертную фазу (газ-носитель), чаще всего
гелий, азот, аргон и др. С помощью редуктора,
уменьшающего давление газа до необходимого,
газ-носитель поступает в колонку, представляющую
собой трубку, заполненную сорбентом или
другим хроматографическим материалом,
играющим роль неподвижной фазы.
Рис.5 Схема работы газового хроматографа:
1 – баллон высокого давления с газом-носителем; 2 – стабилизатор потока; 3 и 3 ' – манометры; 4 – хроматографическая колонка; 5 – устройство для ввода пробы; 6 – термостат; 7 – детектор; 8 – самописец; 9 – расходомер
Газ-носитель подается из баллона под определенным постоянным давлением, которое устанавливается при помощи специальных клапанов. Скорость потока в зависимости от размера колонки, как правило, составляет 20—50 мл •мин'1. Пробу перед вводом в колонку дозируют, Жидкие пробы вводят специальными инжекционными шприцами (0,5—20 мкл) в поток газа-носителя (в испаритель) через мембрану из силиконовой самоуплотняющейся резины. Для введения твердых проб используют специальные приспособления. Проба должна испаряться практически мгновенно, иначе пики на хроматограмме расширяются и точность анализа снижается. Поэтому дозирующее устройство хроматографа снабжено нагревателем, что позволяет поддерживать температуру дозатора примерно на 50°С выше, чем температура колонки.
Применяют разделительные колонки двух типов: в ~80% случаев спиральные, или насадочные (набивные), а также капиллярные. Спиральные колонки диаметром 2—6 мм и длиной 0,5—20 м изготавливают из боросиликатного стекла, тефлона или металла. В колонки помещают стационарную фазу: в газоадсорбционной хроматографии это адсорбент, а в газожидкостной хроматографии — носитель с тонким слоем жидкой фазы. Правильно подготовленную колонку можно использовать для нескольких сотен определений. Капиллярные колонки разделяют по способу фиксации неподвижной фазы на два типа: колонки с тонкой пленкой неподвижной жидкой фазы (0,01—1 мкм) непосредственно на внутренней поверхности капилляров и тонкослойные колонки, на внутреннюю поверхность которых нанесен пористый слой (5—10 мкм) твердого вещества, выполняющего функцию сорбента или носителя неподвижной жидкой фазы. Капиллярные колонки изготавливают из различных материалов - нержавеющей стали, меди, дедерона, стекла; диаметр капилляров 0,2—0,5 мм, длина от 10 до 100 м.
Температура колонок определяется главным образом летучестью пробы и может изменяться в пределах от - 1960С (температура кипения жидкого азота) до 3500 С. Температуру колонки контролируют с точностью до нескольких десятых градуса и поддерживают постоянной с помощью термостата. Прибор дает возможность в процессе хроматографирования повышать температуру с постоянной скоростью (линейное программирование температуры).
Для
непрерывного измерения концентрации
разделяемых веществ в газе-
Детектор
по теплопроводности (катарометр). Универсальный
детектор наиболее широко используется
в ГХ. В полость металлического блока помещена
спираль из металла с высоким термическим
сопротивлением (Pt, W,
их сплавы, Ni) (рис. 6).
Рис.6 Схема
катарометра: 1 - ввод газа из колонки; 2
- изолятор; 3 - выход в атмосферу; 4 - металлический
блок; 5 - нить сопротивления
Через
спираль проходит постоянный ток, в
результате чего она нагревается. Если
спираль обмывает чистый газ-носитель,
спираль теряет постоянное количество
теплоты и ее температура постоянна. Если
состав газа-носителя содержит примеси,
то меняется теплопроводность газа и соответственно
температура спирали. Это приводит к изменению
сопротивления нити, которое измеряют
с помощью моста Уитстона (рис. 7).
Рис. 7. Схема моста Уитстона:
1
- вход газа из колонки; 2 - ввод чистого
газа-носителя; 3 - источник тока;
4 - регулятор тока, проходящего через
нити; 5 - миллиамперметр; 6 - установка
нуля
Сравнительный поток газа-носителя омывает нити ячеек R1 и R2 а газ, поступающий из/колонки, омывает нити измерительных ячеек С1 и С2. Если у четырех нитей одинаковая температура (одинаковое сопротивление), мост находится в равновесии. При изменении состава газа, выходящего из колонки, сопротивление нитей ячеек С1 и С2 меняется, равновесие нарушается и генерируется выходной сигнал.
На чувствительность катарометра сильно влияет теплопроводность газа-носителя, поэтому нужно использовать газы-носители с максимально возможной теплопроводностью, например гелий или водород.
Рис.8 Схема
электронно-захватного детектора:
1 - ввод газа; 2 - источник излучения;
3 - вывод в атмосферу; 4,5 - электроды
Детектор электронного захвата представляет собой ячейку с двумя электродами (ионизационная камера), в которую поступает газ-носитель, прошедший через хроматографическую колонку (рис. 8). В камере он облучается постоянным потоком b-электронов, поскольку один из электродов изготовлен из материала, являющегося источником излучения (63Ni, 3Н, 226Ra). Наиболее удобный источник излучения — титановая фольга, содержащая адсорбированный тритий. В детекторе происходит реакция свободных электронов с молекулами определенных типов с образованием стабильных анионов: АВ + е = АВ- ± энергия, АВ+е=А + В- ± энергия. В ионизованном газе-носителе (N2, Не) в качестве отрицательно заряженных частиц присутствуют только электроны. В присутствии соединения, которое может захватывать электроны, ионизационный ток детектора уменьшается. Этот детектор дает отклик на соединения, содержащие галогены, фосфор, серу, нитраты, свинец, кислород; на большинство углеводородов он не реагирует.
Пламенно
- ионизационный детектор (ПИД).
Схема ПИД приведена на рис. 9.
Выходящий из колонки газ смешивается
с водородом и поступает в форсунку горелки
детектора.
Рис. 9 Схема
ПИД: 1 - ввод газа на колонки; 2 - ввод водорода;
3 - вывод в атмосферу; 4 - собирающий
электрод; 5 - катод; 6 - ввод воздуха
Образующиеся в пламени ионизованные частицы заполняют межэлектродное пространство, в результате чего сопротивление снижается, ток резко усиливается. Стабильность и чувствительность ПИД зависит от подходящего выбора скорости потока всех используемых газов (газ-носитель ~30—50 мл/мин, H2 ~30 мл/мин, воздух ~300—500 мл/мин). ПИД реагирует практически на все соединения, кроме Н2, инертных газов, О2, N2, оксидов азота, серы, углерода, а также воды. Этот детектор имеет широкую область линейного отклика (6—7 порядков), поэтому он наиболее пригоден при определении следов.
Метод ГХ — один из самых современных методов многокомпонентного анализа, его отличительные черты — экспрессность, высокая точность, чувствительность, автоматизация. Метод позволяет решить многие аналитические проблемы. Количественный ГХ анализ можно рассматривать как самостоятельный аналитический метод, более эффективный при разделении веществ, относящихся к одному и тому же классу (углеводороды, органические кислоты, спирты и т.д.). Этот метод незаменим в нефтехимии (бензины содержат сотни соединений, а керосины и масла — тысячи), его используют при определении пестицидов, удобрений, лекарственных препаратов, витаминов, наркотиков и др. При анализе сложных многокомпонентных смесей успешно применяют метод капиллярной хроматографии, поскольку число теоретических тарелок для 100 м колонки достигает (2—3)*105.
Возможности метода ГХ существенно расширяются при использовании реакционной газовой хроматографии (РГХ), вследствие того что многие нелетучие, термонеустойчивые или агрессивные вещества непосредственно перед введением в хроматографическую колонку могут быть переведены с помощью химических реакций в другие — более летучие и устойчивые. Химические превращения осуществляют чаще на входе в хроматографическую колонку, иногда в самой колонке или на выходе из нее перед детектором. Значительно удобнее проводить превращения вне хроматографа. Недостатки метода РГХ связаны с появлением новых источников ошибок и возрастанием времени анализа.
Реакционную хроматографию часто используют при определении содержания микроколичеств воды. Вода реагирует с гидридами металлов, с карбидом кальция или металлическим натрием и др., продукты реакции (водород, ацетилен) детектируются с высокой чувствительностью пламенно-ионизационным детектором. К парам воды этот детектор малочувствителен. Широко применяют химические превращения в анализе термически неустойчивых биологических смесей. Обычно анализируют производные аминокислот, жирных кислот С10—C20, сахаров, стероидов. Для изучения высокомолекулярных соединений (олигомеры, полимеры, каучуки. смолы и т.д.) по продуктам их разложения используют пиролизную хроматографию. В этом методе испарение пробы заменяют пиролизом. Карбонаты металлов можно проанализировать по выделяющемуся диоксиду углерода при обработке их кислотами.
Методом газовой хроматографии можно определять металлы, переводя их в летучие хелаты. Особенно пригодны для хроматографирования хелаты 2-, 3- и 4-валентных металлов с b-дикетонами. Лучшие хроматографические свойства проявляют b-дикетонаты Be(II), Al(III), Sc(III), V(III), Cr(III). Газовая хроматография хелатов может конкурировать с другими инструментальными методами анализа.
ГХ используют также в препаративных целях для очистки химических препаратов, выделения индивидуальных веществ из смесей. Метод широко применяют в физико-химических исследованиях: для определения свойств адсорбентов, термодинамических характеристик адсорбции и теплот адсорбции, величин поверхности твердых тел, а также констант равновесия, коэффициентов активности и др.
При помощи газового хроматографа, установленного на космической станции "Венера-12", был определен состав атмосферы Венеры. Газовые хроматографы устанавливают в жилых отсеках космических кораблей: организм человека выделяет много вредных веществ, и их накопление может привести к большим неприятностям. При превышении допустимых норм вредных веществ автоматическая система хроматографа дает команду прибору, который очищает воздух.
Термически
лабильные вещества с низкой летучестью
можно анализировать методом сверхкритической
флюидной хроматографии (разновидность
ГХ). В этом методе в качестве подвижной
фазы используют вещества в сверхкритическом
состоянии при высоких давлении и температуре.
Это могут быть диоксид углерода, н-пентан,
изо-пропанол, диэтиловый эфир и др. Чаще
применяют диоксид углерода, который легче
перевести в сверхкритическое состояние,
он нетоксичен, не воспламеняется, является
дешевым продуктом. Преимущество этого
метода, по сравнению с методами ГХ и ВЭЖХ,
— экспрессность, обусловленная тем, что
вязкость фаз в сверхкритическом состоянии
мала, скорость потока подвижной фазы
высокая и время удерживания компонентов
пробы сокращается более чем в 10 раз. В
этом методе используют капиллярные колонки
длиной 10—15 м, спектрофотометрический
или пламенно-ионизационный детектор.