Автор работы: Пользователь скрыл имя, 09 Мая 2013 в 06:08, контрольная работа
Рама вагона является основой кузова, воспринимает от него и перевозимого груза все нагрузки, передает их на ходовые части и, кроме того, служит для размещения автотормозного и автосцепных устройств. Рамы современных грузовых вагонов представляют собой прочные металлические цельносварные конструкции из продольных и поперечных балок. Рамы основных типов вагонов эксплуатационного парка изготовлены из стали марок 09Г2Д, 10Г2БД, а после 2001 г. для изготовления
рам применяют более прочные стали марок ЮХСНД и 16Г2АФД.
Последовательность сборки и разборки деталей механизма автосцепки
Перед сборкой осматривают
карман корпуса, где не должно
находиться посторонних
Это обеспечивается нажатием тонким стержнем
на нижнее фигурное плечо ж предохранителя
во время установки замка. После этого
валик подъемника 75 вставляют с левой
стороны в отверстие 16 корпуса автосцепки
так, чтобы отверстие в балансире ф находилось
вверху.
Поворотом за балансир валика подъемника
проверяют подвижность деталей механизма
автосцепки. Нажатием на замок и лапу замкодержателя
проверяют их подвижность. Они должны
свободно входить внутрь кармана, а при
отпускании возвращаться в прежнее положение.
После проверки механизма валик подъемника
15 закрепляют болтом 17, который вставляют
обязательно сверху в отверстие прилива
корпуса, а снизу на резьбовую его часть
одевают запорную шайбу 18 и навинчивают
гайку. Лепестки шайбы отгибают на грани
гайки, фиксируя ее и предотвращая от самоотворачивания.
Разборка механизма осуществляется в
обратной последовательности. Затем проверяют
действие предохранителя от саморасцепа,
пользуясь специальным шаблоном.
Взаимодействие деталей механизма автосцепки СА-3
Автосцепка СА-3 обеспечивает автоматическое
сцепление подвижного состава. Расцепление
осуществляется без захода человека
в межвагонное пространство, что создает
безопасные условия работы обслуживающему
персоналу. До разведения подвижного состава
сохраняется расцепленное положение деталей
механизма автосцепок, а после разведения
механизмы автоматически приводятся к
готовности сцепления. В случае ошибочного
расцепления предусмотрена возможность
восстановления сцепления без разведения
подвижного состава. Предусмотрено также
положение деталей механизма «на буфер»,
при котором автосцепки не сцепляются.
Это положение используется при производстве
маневровых работ, когда подвижной состав
перемещается толканием без необходимости
его сцепления.
Надежное сцепление осуществляется при
отклонении осей автосцепок по вертикали
до 240 мм у новых и до 150 мм у предельно изношенных,
но еще отвечающих нормам содержания в
эксплуатации. С целью обеспечения надежной
работы сцепленных автосцепок при формировании
поездов разность высот их осей допускается
до 100 мм в грузовых и 50 мм в пассажирских
вагонах. Максимальные отклонения продольных
осей автосцепок в горизонтальной плоскости
(рис. 3.49), при которых в начальный момент
соударения происходит автоматическое
улавливание, составляет 175 мм. Процесс
сцепления происходит следующим образом.
При соударении вагонов малый зуб корпуса
одной автосцепки скользит по направляющей
ударной поверхности малого 4 (положение
а) или большого 1 (положение б) зубьев,
стремясь попасть в зев, и нажимает на
выступающую часть замка 3, а затем и на
лапу 2 замкодержателя. При незначительном
отклонении продольных осей автосцепок
или их совпадении замки взаимодействуют
друг с другом.
В этих случаях каждый из
замков 1 (рис. 3.50, а) начинает свободно
входить внутрь кармана
В этот момент замки 1 потеряют
свои опоры (на малые зубья)
и под действием собственной
силы тяжести, перекатываясь
Процесс расцепления осуществляется
человеком путем поворота против часовой
стрелки рукоятки расцепного рычага, что
посредством соединительной цепочки приводит
к повороту валика подъемника 6 (рис. 3.51,
а) и одетого на его квадратную часть подъемника
7.
В начальный момент широкий
палец 1 подъемника 7 нажмет на
нижнее фигурное плечо 8 предохранителя
и поднимет с полочки 3 верхнее
его плечо 2 выше упора противовеса
4 замкодержателя. Таким образом, произойдет
выключение предохранителя от саморасцепа.
При дальнейшем повороте валика подъемника
9 (рис. 3.51, б), а следовательно, и подъемника
13, его широкий палец 5 нажмет на выступ
5 замка 1, который, перекатываясь по днищу
11 своей дуговой опорой 12, войдет внутрь
кармана. При этом верхнее плечо 6 предохранителя
скользит по верху противовеса 7 замкодержателя,
не препятствуя уходить замку 1 внутрь.
Одновременно подъемник 13, поворачиваясь,
своим узким пальцем 4 нажимает на горизонтальную
грань 3 расцепного угла замкодержателя
и приподнимает его на шипе 2 благодаря
овальному отверстию.
Сигнальный отросток 10 замка 1 начинает
выходить из корпуса. Заключительный этап
расцепленного состояния автосцепок характерен
тем, что узкий палец 4 подъемника 8 (рис.
3.51) заскакивает за вертикальную грань
3 расцепного угла замкодержателя 2, который
опускается вниз и опирается на шип 1. Такое
расцепленное состояние (рис. 3.52) будет
сохраняться до разведения вагонов, так
как замок 10 посредством выступа 6 через
широкий 5 и узкий 4 пальцы подъемника 8
опирается на вертикальную грань 3 расцепного
угла замкодержателя 2, лапа 11 которого,
в свою очередь, взаимодействует с малым
зубом соседней автосцепки. Сигнальный
отросток красного цвета 7 замка 10 выступает
из корпуса, указывая на то, что автосцепки
расцеплены.
Если автосцепки ошибочно
расцеплены, то можно восстановить
сцепленное состояние деталей
механизма без разведения
Замок 10 окажется свободным и выпадет
в зев под действием собственной силы
тяжести. При положении «на буфер» рукоятка
расцепного рычага укладывается на полочку
кронштейна. В результате цепочка расцепного
привода всегда будет натянута, а подъемник
8 постоянно находиться в вертикальном
положении. Следовательно, замок 10 посредством
широкого пальца 5 подъемника 8 и выступа
6 будет располагаться внутри кармана.
Таким образом, при соударении автосцепок
они не будут сцепляться.
Для восстановления готовности к сцеплению
автосцепок необходимо рукоятку расцепного
рычага установить в вертикальное положение,
сняв ее с полочки кронштейна.
8.1. Назначение
поглощающих аппаратов
Поглощающие аппараты предназначены
гасить часть энергии удара, уменьшая
продольные растягивающие и сжимающие
усилия, передающиеся на раму кузова вагона
через автосцепку. Принцип их действия
основан на возникновении в аппарате сил
сопротивления и преобразовании кинетической
энергии соударяющихся масс в другие виды
энергии. По типу рабочего элемента, создающего
силы сопротивления, поглощающие аппараты
бывают: пружинные, пружинно-фрикционные,
с резинометаллическими элементами, гидравлические
и др. Пружинные аппараты не нашли широкого
применения в вагонах из-за большой отдачи
пружин и невозможности получить высокую
энергоемкость в ограниченных габаритах
в конструкциях вагонов. Они применяются
лишь в буферных устройствах.
Рис.3.53 Расположение поглощающего аппарата (поз.10) на вагоне ( вид снизу)
8.2. Пружинно-фрикционные
аппараты
Пружинно-фрикционные аппараты автосцепки
получили наибольшее распространение
в вагонах из-за простоты и возможности
их проектирования с удовлетворительными
параметрами. Основная часть подвижного
состава российских железных дорог оснащена
пружинно-фрикционными поглощающими аппаратами
шестигранного типа — аппаратами Ш-1-ТМ,
которыми оборудовались четырехосные
грузовые вагоны постройки до 1979 г., а затем
преимущественно аппаратами Ш-2-В. Восьмиосные
вагоны оснащались аппаратами типа Ш-2-Т
и Ш-4-Т, имеющими отличие в габаритных
размерах (Ш — шестигранный, Т — термически
обработанный, М — модернизированный,
В — взаимозаменяемый). Эти аппараты сходны
между собой по конструкции и различаются
в основном параметрами: энергоемкостью,
ходом, первоначальной и конечной силой
сжатия.
Пружинно-фрикционные аппараты шестигранного
типа (рис. 3.54, а) состоят из корпуса
1 с шестигранной горловиной, в которой
размещены нажимной конус 7 и три клина
6. Внутри корпуса поставлена двухрядная
пружина: наружная 4 и внутренняя 3, сверху
которой уложена нажимная шайба 5. С целью
увеличения высоты пружины у аппаратов
Ш-2-В, Ш-2-Т и Ш-4-Т отсутствует нажимная
шайба.
Из анализа силовой
После уменьшения сжимающей силы до величины,
соответствующей точке С, клинья остаются
неподвижными вследствие удержания их
силами трения. Дальнейшее уменьшение
силы приведет к восстановлению (отдаче)
аппарата за счет упругих сил пружин, которые
по величине превышают силы трения клиньев
о корпус. В точке Е диаграммы аппарат
полностью восстановится и будет готов
к восприятию следующего удара. Для того
чтобы клинья при перемещении не перекашивались
и не смещались в сторону, они сделаны
в форме угла, а горловина корпуса аппарата
выполнена шестигранной формы, т.е. клинья
перемещаются по направляющим. Для облегчения
восстановления аппарата грани горловины
корпуса выполнены с уклоном 2° в наружную
сторону.
Основные параметры аппарата определяют
по его диаграмме: площадь OABD — энергоемкость;
АВСЕ — необратимо поглощаемая энергия;
OECD — потенциальная энергия деформации
пружин, преодолевающая работу сил трения
и возвращающая детали в исходное положение.
После сборки аппарата и сжатия его под
прессом на стягивающий болт навинчивают
гайку, под которую ставят временную подкладку
толщиной 10 мм, что обеспечивает свободную
постановку его на вагон, а после первого
удара в автосцепку и выпадания подкладки
аппарат занимает нормальное положение
в распор между задними и передними упорами.
Пружинно-фрикционный аппарат типа Ш-6-ТО-4
разработан для грузового четырехосного
подвижного состава. Он состоит из корпуса
4 (рис. 3.55), выполненного за одно целое
с тяговым хомутом, отъемного днища 9, нажимного
конуса 1, трех фрикционных клиньев 2, опорной
шайбы 3, наружной пружины б, двух внутренних
пружин 7, между которыми установлена промежуточная
шайба 5, и стяжного болта с гайкой 8. Аппарат
Ш-6-ТО-4 имеет шестигранную схему фрикционного
узла и принцип действия по типу рассмотренных
выше конструкций. Он взаимозаменяем с
аппаратами Ш-1ТМ и Ш-2-В по установочным
размерам. Однако при установке данного
аппарата в вагоны прежней постройки требуется
модернизация упоров, обеспечивающих
свободное размещение между ними съемного
днища.
Поглощающий аппарат Ш-6-ТО-4У (рис.
3.56) является вариантом предыдущего типа.
Его особенностью является то, что в конструкции
отсутствует стяжной болт с гайкой. Поглощающий
аппарат Ш-6-ТО-4У состоит из корпуса 1, изготовленного
совместно с хомутовой частью, имеющей
упоры 2, упорной плиты 3, конуса 4, фрикционных
клиньев 5, размещенных в горловине б корпуса
аппарата, и пружин 11 и 12, предварительно
сжатых съемным днищем 10. В сжатом состоянии
через вырез 7 закладываются сухари 9, которые
после снятия монтажной нагрузки посредством
заплечиков 8 и буртиков 13 (рис. 3.56, 6) корпуса
фиксируют днище, удерживающее все детали
в собранном состоянии аппарата.
Пружинно-фрикционный
В аппарате ПМК-110А
в целях повышения
Поглощающий аппарат типа ПФ-4 (рис.
3.58) состоит из корпуса 6 коробчатого сечения,
выполненный в виде единой отливки с тяговым
хомутом.
В корпусе размещен сменный фрикционный
узел, взаимодействующий через центральную
опорную плиту 7 с подпорным комплектом.
Фрикционный узел состоит из распорного
клина 12, опирающегося своими наклонными
поверхностями на подвижные клинья 2 подвижных
плит 1, установленных подвижно в продольном
направлении на поперечных ребрах корпуса,
неподвижных клиновых вкладышей 5 и боковых
вкладышей 3, отбойной пружины 4 и центральной
опорной плиты 7. Подпорный комплект аппарата
включает в себя силовые наружную 9, внутренние
10 пружины с промежуточной шайбой 8, размещаемые
в удлинителе 11, который монтируется в
корпусе через отверстие в днище. Работа
аппарата характеризуется высокой скоростью
приработки и для условий эксплуатации
оценивается периодом 0,5—1 год.
Работа аппарата сводится
к следующему. При действии продольной
сжимающей силы от корпуса
автосцепки через упорную
Поглощающий аппарат типа ПГФ-4 имеет
аналогичную конструкцию с аппаратом
ПФ-4 и отличается от него наличием гидроусилителя
(рис. 3.59), размещенного в наружной силовой
пружине удлинителя.
Информация о работе Назначение, типы и устройство рам грузовых вагонов