Электрификация железных дорог

Автор работы: Пользователь скрыл имя, 19 Января 2011 в 09:14, реферат

Описание работы

Электрификация железных дорог не является чем-то новым, и при ее проведении можно использовать имеющееся оборудование. Перед второй мировой войной в США было свыше 10 тыс. км электрифицированных железных дорог, из которых осталось лишь около 2000 км. Во всем мире сегодня более 100 тыс. км электрифицированных железных дорог, и США занимают 14 место по этому показателю. Во многих развитых странах электрификация железных дорог является национальной программой. По-видимому, наиболее быстрыми темпами электрификация осуществлялась в Советском Союзе.

Файлы: 1 файл

Электрификация железных дорог.doc

— 85.50 Кб (Скачать файл)

Электрификация  железных дорог

 

Электрификация  железных дорог не является чем-то новым, и при ее проведении можно использовать имеющееся оборудование. Перед второй мировой войной в США было свыше 10 тыс. км электрифицированных железных дорог, из которых осталось лишь около 2000 км. Во всем мире сегодня более 100 тыс. км электрифицированных железных дорог, и США занимают 14 место по этому показателю. Во многих развитых странах электрификация железных дорог является национальной программой. По-видимому, наиболее быстрыми темпами электрификация осуществлялась в Советском Союзе.

С технической  точки зрения электрификация железных дорог в США по существующей технологии не представляет сложности и может  быть начата немедленно с использованием применяющегося в других странах оборудования. Несомненно, система будет более эффективной, если провести интенсивные научно-исследовательские работы. Поэтому, когда будет принято решение электрифицировать железные дороги США, программа должна предусматривать проведение всеобъемлющих научно-исследовательских работ как с ближней, так и с дальней перспективой. Поскольку осуществление программы электрификации потребует не менее 20 лет, результаты научных исследований и разработок могут внедряться поэтапно, что позволит сделать систему более эффективной и производительной.

Если технология не является препятствием для осуществления  программы электрификации, то возникает  вопрос: почему она до сих пор  не реализована?

В последние  несколько лет было выполнено  много исследований всех «за» и «против» электрификации. Все исследователи признают, что электрификация технически возможна и экономически выгодна. Выводы этих работ расходились только относительно величины прибыли на вложенный капитал. По разным оценкам величина прибыли составит 14 % и выше. Чем позднее выполнено исследование, тем большую величину прибыли оно предсказывает, главным образом из-за более точной оценки стоимости работ и непрерывно возрастающей стоимости дизельного топлива. Одним из последних исследований по электрификации железных дорог является работа Уитфорда , в которой проводится сравнение эффективности капиталовложений в электрификацию и в производство синтетического топлива с точки зрения экономии нефти. Автор приходит к выводу, что электрификация экономически выгодна. Он утверждает также, что «сравнительная

эффективность использования тонны угля для  производства дизельного топлива или  электричества такова, что использование  электрической тяги позволяет перевезти  вдвое больше груза». Кроме того, «электрификация позволит оживить железнодорожные перевозки вследствие роста прибыли, производительности и расширения количества услуг». Последний момент может оказаться наиболее важным; электрифицированные дороги откроют много новых возможностей для улучшения обслуживания потребителей. Железные дороги перестанут также зависеть от нефти, поэтому при ожидаемой нехватке нефти в будущем они смогут не только обойтись без нефтяного топлива, но и взять на себя перевозку тех грузов, которые сейчас транспортируются автомобилями.

1 Эксплуатационная  часть

1.1 Назначение, применение и особенности системы

     1.1 Автоблокировка с рельсовыми цепями тональной частоты без изолирующих стыков  предназначена для  применения на двухпутных участках ж.д. линий при любом виде тяги , а в первую очередь на участках с цельносварными рельсовыми плетями и при пониженном сопротивлении балласта.

     1.2 Основу системы автоблокировки без изолирующих стыков с централизованным размещением аппаратуры составляют тональные рельсовые цепи (ТРЦ).

     Для работы ТРЦ используются амплитудно-модулированные сигналы с несущими частотами 420, 480, 580, 720, 780 Гц и частотами модуляции 8 или 12 Гц.

     Для исключения перекрытия сигнала приближающимся поездом точка подключения аппаратуры рельсовой цепи выносится на 40 метров по направлению движения за светофор. В рельсовых цепях, в зоне установки светофора, в которых необходимо обеспечить зону дополнительного шунтирования не более 40 метров, должны использоваться только частоты 780, 720 и 580 Гц. Длина рельсовой цепи за светофором в зависимости от частоты и удаленности от станции размещения аппаратуры ограничивается 200-350 метрами.

     Зашита  рельсовых цепей параллельных путей  от взаимного влияния должна обеспечиваться применением различных несущих  частот или частот модуляции.

     1.3 Аппаратура АБТЦ размещается на станциях, ограничивающих перегон, на постах ЭЦ.

     При небольшой длине перегона аппаратура может быть размещена на одной  из станций, ограничивающих перегон.

     Деление перегона производится по сигнальной установке, причем сигнал и, как правило, питающий конец рельсовой цепи, расположенный на расстоянии 40 метров за светофором, подключаются со станции отправления.

     Светофор, по которому производится деление перегона, выбирается исходя из удаления от станций, ограничивающих перегон, и возможности размещения аппаратуры на станциях.

     1.4 Соединение постовой и перегонной аппаратуры, а также увязка аппаратуры, расположенной на смежных станциях, осуществляется двумя сигнально-блокировочными кабелями парной скрутки для каждого пути.

     Питающие  и релейные концы перегонных рельсовых цепей, а также прямые и обратные жилы для включения удаленных светофоров должны размещаться в разных кабелях с обязательной организацией схемы контроля исправности кабельных цепей ТРЦ, обеспечивающей отключение питающих устройств при неисправности кабеля.

     1.5 Для согласования кабельной и рельсовой линий на перегоне устанавливаются путевые трансформаторы ПОБС-2А.

     Две смежных рельсовых цепи на перегоне имеют один общий питающий конец. Для их питания используется одна пара жил сигнального кабеля. Два приемника смежных ТРЦ также подключаются к одной паре, по этим же парам передают кодовые сигналы числовой АЛС.

     Кодирование ТРЦ сигналами АЛС осуществляется, как правило, из каждой точки подключения  аппаратуры, с момента вступления поезда на данную рельсовую цепь. Передача кодовых сигналов в ТРЦ выполняется через усиленные фронтовые контакты кодововключающих реле.

     Для исключения восприятия локомотивными  устройствами поезда, находящегося перед  светофором с запрещающим показанием, разрешающих кодовых сигналов от следующего по ходу светофора при ложной занятости ТРЦ, предусматривается схема контроля последовательного занятия РЦ.

     Кодирование всех рельсовых цепей одного блок-участка  должно осуществляться от одного кодового путевого трансмиттера, за исключением граничной рельсовой цепи в неправильном направлении движения.

     1.6 На двухпутных участках должно быть обеспечено двухстороннее движение поездов по каждому пути. Регулирование движения поездов в правильном направлении осуществляется по показаниям проходных светофоров и светофоров локомотивной сигнализации. В неправильном направлении движение поездов осуществляется по показаниям локомотивного светофора автоматической локомотивной сигнализации, при этом длина блок-участка должна быть не менее тормозного пути служебного торможения с Vж до полной остановки на расстоянии не менее 100 м до светофора встречного направления.

     1.7 За светофором с запрещающим показанием, ограждающим занятый блок-участок, предусматривается защитный участок протяженностью не менее длины тормозного пути автостопного торможения от допустимой скорости проследования путевого светофора с одним желтым немигающим огнем до полной остановки (с Vкж до 0 км/ч).

     Защитный  участок предусматривается также  и при движении в неправильном направлении по сигналам АЛСН.

     1.8 Проходной светофор принимает разрешающие показания при свободности ограждаемого им блок-участка, защитного участка и последовательном освобождении рельсовых цепей, контроль которого осуществляется схемным путем. При движении в неправильном направлении по сигналам АЛСН такая зависимость формирования разрешающего кода АЛСН сохраняется. Ложная занятость и последующее восстановление работоспособности одной рельсовой цепи не приводит к сохранению запрещающего сигнала на светофоре. Двухнитевые лампы, с переключением основной нити при ее перегорании на резервную, применяются для красных огней проходных светофоров и для красного и желтого огней предупредительного светофора. 

 

     2 Техническая часть

     2.1 Разработка принципиальных схем

Схема рельсовой  цепи

     В системе АБТ для контроля состояния  блок-участков используются два типа рельсовых цепей ТРЦ3 и ТРЦ4. Устройство ТРЦ3 и ТРЦ4 допускают совмещение приемных концов, а так же при  необходимости приемного конца  ТРЦ4 с питающим концом ТРЦ3. Длина ТРЦ3 в зависимости от удельного сопротивления изоляции от 0,04 – 1,0 Ом*км может составлять 150 – 1000 метров для частот сигнального тока 420 и 480 Гц. Длина ТРЦ4 может находиться в пределах 100-300 м и при сопротивлении изоляции от 0,05-0,35 Ом*км.

     Исключение  подпитки рельсовой цепи одного пути от рельсовых цепей смежного пути осуществляется применением для  каждого пути своей комбинации частот сигнальных (несущих) и модулирующих частот, отличных друг от друга.

     Для питания рельсовых цепей используется генератор путевой типа ГПЗ-8,9,11 или ГПЗ-11,14,15, которые настраиваются на передачу амплитудно-модулированного сигнала одной из несущих частот 420, 480, 580 Гц или 580, 720, 780 Гц с модуляцией 8 или 12 Гц.

     От  генератора сигнал через путевой  фильтр Ф типа ФПМ8.9,11 или ФПМ11,14,15, выходную цепь передающих устройств числовой АЛС (конденсатор С емкостью 4 мкФ), кабель и согласующий трансформатор типа ПОБС-2А, устанавливаемый у пути в путевом ящике, поступает в рельсовую цепь,

     На  приемном конце рельсовой цепи сигнал поступает через аналогичные элементы на вход приемного устройства ПП типа ПП. В результате, на выходе путевого приемника, настроенного на несущую и модулирующую частоты принимаемого сигнала происходит срабатывание путевого репе …П типа АНШ2-310, контролирующего свободное или занятое состояние рельсовой цепи.

     Реле ...П1 и ...П2 типа НМШ1-400 - повторители  путевых реле.

     Реле ...ПП типа НМШ1-1440 - повторители путевых  реле блок-участка.

     Реле ...ЗУ тина НМШ1-1440- повторители путевых  реле защитного участка правильного направления.

     Реле ...ЗУН типа НМШ1-1440 - то же неправильного  направления. 

 

Схема контроля кабельных  линий

     Схема строится для каждого пути, примыкающего к четной и нечетной горловинам станции. Схема служит для исключения опасных  ситуаций, которые могут возникнуть при непосредственном сообщении между жилами кабеля или через оболочку, при понижении сопротивления изоляции по отношению к земле или обрыве кабеля.

     В схеме имеются две идентичные цепи контроля, в одну из которых  включены цепи питающих концов, а в другую - релейных. Реле ПКЛ и РКЛ, включенные между одним из полюсов питания и первой контролируемой цевью, обеспечивают симметрию первых по схеме кабельных цепей и контролируют обрыв любой из цепей.

     В схеме применены реле типа АНШ2-1230.

     В  качестве  источника  питания  устанавливается блок БВЗ, напряжение на выходе которого составляет около 200 В при подаче на его вход напряжения 220 В переменного тока. Для получения  напряжения 220 В применяется двукратная трансформация напряжения посредством трансформаторов типа СТ-5МП.

     При исправном состояния кабельных  цепей все контрольные реле возбуждены, получая питание от блоков БВЗ  через контролируемые цепи и резисторы R1 в питающей и R4 в релейной цепи (режим контроля). Напряжение на обмотках каждого контрольного реле в режиме контроля - 3,7...4,3 В, что на 40% больше напряжения отпускания якоря. Возбуждено также общеконтрольное реле КЛ черед фронтовые контакты всех индивидуальных контрольных реле ПКЛ и РКЛ. На табло включена белая контрольная лампа. Фронтовым контактом реле КЛ замыкается цепь питания генераторов рельсовых цепей.

     В случае замыкания между жилами, понижении  изоляции между ними или сообщения  одной из жил с землей, отпускают  якорь одно или несколько контрольных  реле вследствие шунтирующего действия повреждения; обесточится реле КЛ. Отключается питание генераторов рельсовых цепей, и на табло включается в мигающем режиме красная лампа, фиксируя неисправность. После устранения повреждения схема автоматически переходит в режим контроля, так как, все контрольные реле возбудятся и своими контактами замкнут цепь питания реле КЛ. Восстанавливается цепь питания генераторов РЦ.

     В случае размыкания кабельной цепи, например, при обрыве жилы или изъятии (хищении) одного из путевых трансформаторов ПОБС-2М из путевого ящика, все контрольные реле, в том числе и ПКЛ (или РКЛ) лишаются питания, выключается реле КЛ, на табло белая лампа включается в мигающий режим, фиксируя повреждение. Питание генераторов рельсовых цепей при этом сохраняется, так как непосредственной угрозы безопасности движения не создается.

     В обоих случаях, когда общеконтрольное  реле КЛ выключается, шунтируя своими контактами резисторы R2, R3, R5, R6, схема  переводится в режим запуска. Напряжение на обмотках каждого контрольного реле в этом режиме должно быть от 8,7 до 11,0 В. Напряжение на обмотках контрольных реле в режиме запуска обеспечивается выбором соответствующего значения сопротивления резисторов R1 в питающей и R4 в релейной цепи. Кроме того, их включение обусловлено необходимостью защиты цепи от чрезмерного возрастания тока, например, в случае замыкания на землю крайней по схеме кабельной жилы.

Информация о работе Электрификация железных дорог