Автор работы: Пользователь скрыл имя, 12 Ноября 2013 в 23:30, контрольная работа
По результатам выполнения задания 1 с вероятностью 0,997 определите:
1) ошибку выборки средней цены за 1 кг товара и границы, в которых будет находиться средняя цена данного товара для генеральной совокупности предприятий;
2) ошибку выборки доли предприятий с уровнем средней цены за 1 кг товара 100 руб. и более и границы, в которых будет находиться генеральная доля.
где n – число единиц выборочной совокупности,
m – количество групп,
– межгрупповая дисперсия,
– дисперсия j-ой группы (j=1,2,…,m),
– средняя арифметическая групповых дисперсий.
Величина рассчитывается, исходя из правила сложения дисперсий:
где – общая дисперсия.
Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).
Если Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность.
Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.
Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:
k2 | ||||||||||||
k1 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
3 |
3,01 |
2,99 |
2,98 |
2,96 |
2,95 |
2,93 |
2,92 |
2,91 |
2,90 |
2,89 |
2,88 |
2,87 |
4 |
2,78 |
2,76 |
2,74 |
2,73 |
2,71 |
2,70 |
2,69 |
2,68 |
2,67 |
2,66 |
2,65 |
2,64 |
5 |
2,62 |
2,60 |
2,59 |
2,57 |
2,56 |
2,55 |
2,53 |
2,52 |
2,51 |
2,50 |
2,49 |
2,48 |
Расчет дисперсионного F-критерия Фишера для оценки =72,4%, полученной при =34,67 =25,09:
Fрасч
Табличное значение F-критерия при = 0,05:
n |
m |
k1=m-1 |
k2=n-m |
Fтабл ( ,5, 25) |
30 |
5 |
4 |
25 |
2,76 |
Вывод: поскольку Fрасч>Fтабл, то величина коэффициента детерминации =72,4% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Средняя цена за 1 кг товара и Объем продаж правомерны не только для выборки, но и для всей генеральной совокупности банков.
Выполнение Задания 3
Целью выполнения данного Задания является определение для генеральной совокупности предприятий границ, в которых будут находиться величина средняя цена данного товара банков и доля предприятий с уровнем средней цены за 1 кг товара не менее 100 руб.
1. Определение ошибки выборки для Средней цены за 1 кг товара предприятий и границ, в которых будет находиться генеральная средняя
Применение выборочного метода наблюдения всегда связано с установлением степени достоверности оценок показателей генеральной совокупности, полученных на основе значений показателей выборочной совокупности. Достоверность этих оценок зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности. Как правило, генеральные и выборочные характеристики не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности).
Значения признаков единиц, отобранных из генеральной совокупности в выборочную, всегда случайны, поэтому и статистические характеристики выборки случайны, следовательно, и ошибки выборки также случайны. Ввиду этого принято вычислять два вида ошибок - среднюю и предельную .
Средняя ошибка выборки - это среднее квадратическое отклонение всех возможных значений выборочной средней от генеральной средней, т.е. от своего математического ожидания M[ ].
Величина средней ошибки выборки рассчитывается дифференцированно (по различным формулам) в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.
Для
собственно-случайной и
,
где – общая дисперсия выборочных значений признаков,
N – число единиц в генеральной совокупности,
n – число единиц в выборочной совокупности.
Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:
где – выборочная средняя,
– генеральная средняя.
Границы задают доверительный интервал генеральной средней, т.е. случайную область значений, которая с вероятностью Р гарантированно содержит значение генеральной средней. Эту вероятность Р называют доверительной вероятностью или уровнем надёжности.
В
экономических исследованиях
В математической статистике доказано, что предельная ошибка выборки кратна средней ошибке µ с коэффициентом кратности t (называемым также коэффициентом доверия), который зависит от значения доверительной вероятности Р. Для предельной ошибки выборочной средней это теоретическое положение выражается формулой
Значения t вычислены заранее для различных доверительных вероятностей Р и протабулированы (таблицы функции Лапласа Ф). Для наиболее часто используемых уровней надежности Р значения t задаются следующим образом (табл. 15):
Таблица 15
Доверительная вероятность P |
0,683 |
0,866 |
0,954 |
0,988 |
0,997 |
0,999 |
Значение t |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
3,5 |
По условию демонстрационного примера выборочная совокупность насчитывает 30 предприятий, выборка 5% механическая, следовательно, генеральная совокупность включает 600 предприятий. Выборочная средняя , дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 16:
Таблица 16
Р |
t |
n |
N |
||
0,997 |
3 |
30 |
600 |
97 |
122,67 |
Расчет средней ошибки выборки по формуле (15):
Расчет предельной ошибки выборки по формуле (17):
Определение по формуле (16) доверительного интервала для генеральной средней:
97-11,652
85,348 руб.
Вывод. На основании проведенного выборочного обследования предприятий с вероятностью 0,997 можно утверждать, что для генеральной совокупности предприятий средний объем кредитных вложений банка находится в пределах от 85,348 руб. до 108,652 руб.
2. Определение ошибки выборки доли предприятий с уровнем средней цены за 1 кг товара 100 руб. и более и границы, в которых будет находиться генеральная доля.
Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой
,
где m – число единиц совокупности, обладающих заданным свойством;
n – общее число единиц в совокупности.
Для
собственно-случайной и
,
где w – доля единиц совокупности, обладающих заданным свойством;
(1-w) – доля единиц совокупности, не обладающих заданным свойством,
N – число единиц в генеральной совокупности,
n– число единиц в выборочной совокупности.
Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих заданным свойством:
По условию Задания 3 исследуемым свойством является равенство или превышение уровня средней цены за 1 кг товара величины 100 руб.
Число предприятий с заданным свойством определяется из табл. 3 (графа 3):
m=12
Расчет выборочной доли по формуле (18):
Расчет по формуле (19) предельной ошибки выборки для доли:
Определение по формуле (20) доверительного интервала генеральной доли:
0,14
или
14%
Вывод. С вероятностью 0,997 можно утверждать, что в генеральной совокупности предприятий уровень средней цены за 1 кг товара величины 100 руб. и выше будет находиться в пределах от 14% до 66,1%.
Выполнение Задания 4
Имеются следующие данные о продаже продуктов в регионе:
Продукт |
Товарооборот, млн руб. |
Индекс, % | ||
Базисный период |
Отчетный период |
цен |
физического объема товарооборота | |
Овощи |
180 |
215 |
90 |
160 |
Молочные продукты |
200 |
195 |
125 |
80 |
1. Рассчитайте сводные индексы:
а) товарооборота;
б) физического объема продаж;
в) цен (по методике Пааше).
2.
Определите абсолютные
а) физического объема продаж;
б) цен;
в) физического объема продаж и цен (двух факторов вместе).
Сделайте выводы.
Решение:
1. Расчет сводных индексов:
215+195/180+200=1,08 %.
Товарооборот в отчётном периоде вырос по сравнению с базисным периодом на 8 %.
= 166*180+80*200/180+200=117,9 %.