Расчет тепловых насосов

Автор работы: Пользователь скрыл имя, 24 Февраля 2015 в 20:49, реферат

Описание работы

Как известно, геотермальные тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3–7.

Файлы: 1 файл

Тепловой насос реферат.docx

— 201.03 Кб (Скачать файл)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательноеучреждение

высшего профессионального образования

 

Санкт-Петербургский государственный экономический университет

 

ИНСТИТУТ СЕРВИСА АВТОТРАНСПОРТА, КОММУНАЛЬНОЙ

И БЫТОВОЙ ТЕХНИКИ

 

Кафедра «Машины и оборудование бытового

и жилищно-коммунального назначения»

 

 

К У Р С О В А Я    Р А Б О Т А

по дисциплине

«Бытовые машины и приборы»

 

Работу выполнил:                             

 

Cтудент группы  151000.62                            ___Мельник.А.О.____

 

 

                                                                                            

Работу проверил:

 

 д.т.н., профессор кафедры МоБЖКН      _________ Лепеш Г.В.

 

Санкт-Петербург

2014 г.

 

Оглавление

 

 

 

 

 

 

 

 

 

 

Расчет тепловых насосов.

  1. Источники тепла. Геотермальные тепловые насосы.

 
Как известно, геотермальные тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3–7.  
 
Говоря более точно, источниками низкопотенциального тепла могут быть наружный воздух температурой от –15 до +15 °С, отводимый из помещения воздух (15–25 °С), подпочвенные (4–10 °С) и грунтовые (более 10 °C) воды, озерная и речная вода (0–10 °С), поверхностный (0–10 °С) и глубинный (более 20 м) грунт (10 °С).  
 
Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме «воздух–вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.  
 
При использовании в качестве источника тепла грунтовой воды она подается из скважины с помощью насоса в теплообменник насоса, работающего по схеме «вода–вода», и либо закачивается в другую скважину, либо сбрасывается в водоем.

2. Принцип действия теплового насоса

Тепловой насос, принцип работы которого построен на цикле Карно ,

по сути – тепловой двигатель, который, в отличие от традиционного процесса горения, позволяет обеспечивать теплоснабжение объекта за счет тепла окружающей среды или возвратного (сбросное) тепла технологических процессов. Важным фактором является чрезвычайно низкое потребление тепловым насосом энергии для своей работы – затрачивая 1 кВт электричества, тепловой насос способен генерировать 4кВт тепла. Для некоторых типов тепловых насосов этот показатель может быть и выше. Говоря иначе, принцип действия теплового насоса основан на переносе тепловой энергии от низкопотенциального источника (вода, воздух, земля) к потребителю (теплоносителю) за счет затраты энергии на преобразование рабочего тела. Схематично тепловой насос можно представить из четырех основных элементов: испарителя, компрессора, конденсатора и сбросного клапана. С рабочим контуром самого теплового насоса связаны еще два контура: первичный (внешний), в котором циркулирует рабочая среда (вода, антифриз или воздух), отбирающая тепло окружающей среды (земля, воздух, вода), и вторичный - вода в системах отопления и горячего водоснабжения.

Принцип работы тепловых насосов базируется на способности рабочего тела, которым является жидкость, способная закипать и испаряться даже при минусовой температуре (например, фреон). Температура низкопотенциального источника энергии, воспринимаемая испарителем, выше температуры кипения фреона при соответствующем давлении. Вследствие теплоотдачи фреон вскипает и переходит в газообразное состояние. Пары фреона поступают в компрессор, в котором сжимаются. При этом его давление и температура увеличивается. Затем горячий и сжатый фреон направляется в конденсатор, охлаждаемый теплоносителем. На охлажденных поверхностях конденсатора пары фреона конденсируются, переходя в жидкое состояние, а его теплота передается теплоносителю, который в дальнейшем используется в системах отопления и горячего водоснабжения. Жидкий фреон направляется в сбросной клапан, проходя через который он снижает давление и температуру и снова возвращается в испаритель. Цикл при этом завершается и будет автоматически повторяться, пока работает компрессор..

3. Пять преимуществ тепловых насосов перед традиционными видами отопления

Экономичность - высокий коэффициент мощности - на производство 4-х кВт тепловой энергии идет 1 кВт электроэнергии, т.е. три из полученных киловатта потребителю обойдутся бесплатно - это тепло, отобранное насосом из окружающей среды. На практике это означает ежегодную экономию затрат на эксплуатацию.

  • Универсальность - с помощью теплового насоса можно решить не только задачу топления, но и охлаждения.

  • Независимость от наличия источника тепла.

  • Исключительная долговечность - единственный элемент, который подвергается механическому износу - это компрессор

  • Пожарная и экологическая безопасность – получение тепла не сопровождается процессом горения.

  • Источники тепла для тепловых насосов

В системах теплоснабжения объектов любого функционального назначения в качестве источников низкопотенциальной тепловой энергии могут быть использованы естественные, непрерывно возобновляемые ресурсы Земли:

  • Атмосферный воздух

  • Поверхностные водоемы и грунтовые воды

  • Грунт ниже глубины промерзания.

В качестве искусственных, техногенных источников низкопотенциального тепла могут выступать:

  • Удаляемый вентиляционный воздух

  • Сточные воды системы канализации

  • Промышленные сбросы технологических вод

3.1 Разновидности тепловых насосов

Тип теплового насоса определяется типом того источника тепла, который он использует как первичный. Напомним, что первичный источник тепла может быть как естественного, природного происхождения (грунт, вода, воздух), так и промышленного (удаляемый вентиляцией воздух, технологические и очищенные сточные воды).

Тепловые насосы типа «воздух-вода»

Окружающий атмосферный воздух особенно привлекателен для использования в качестве источника тепла, он имеется повсеместно и неограниченно. Воздушные тепловые насосы не требуют ни горизонтальных коллекторов, ни вертикальных зондов. Компактный наружный блок эффективно отбирает тепло воздуха и органично вписывается в любой интерьер. Тепловые насосы «воздух-вода» способны работать круглый год, как зимой, так и летом. Однако при температурах ниже -15С система отопления должна быть дополнена вторым отопительным прибором, например, газовым или твердотопливным котлом. Преимущество – снижение инвестиционных затрат по сравнению с другими типами тепловых насосов за счет отсутствия вспомогательных земляных работ, простота конструкции для использования в целях и отопления, и охлаждения. Недостаток – температурный лимит первичного источника тепла. Коэффициент мощности – 1,5-2.

Тепловые насосы типa «вода-вода»

Грунтовые воды – хороший аккумулятор солнечной тепловой энергии. Даже в зимний период дни они сохраняют постоянную положительную температуру (например, для Северо-Западного региона этот показатель находится на уровне +5+7°С). Однако, на наш взгляд, наилучшие перспективы применения имеют тепловые насосы, работающие на тепле сточных и технологических вод. Непрерывный водный поток, его высокий температурный уровень гарантируют постоянно высокий коэффициент мощности. Для промышленных предприятий инвестиции в теплонаносную установку сразу же, с момента запуска, обеспечат экономию средств на отопление и сократят зависимость от централизованных сетей теплообеспечения. В этом случае сбрасываемое в стоки тепло, по сути – источник дополнительного дохода, который без использования теплового насоса был бы невозможен. Преимущество – стабильность работы. Недостаток – для стабильной работы необходим постоянный поток вод удовлетворительного качества. Коэффициент мощности – 4-6.

Тепловые насосы типа «грунт-вода»

Тепловая энергия Солнца воспринимается грунтом либо непосредственно в форме радиации, либо косвенно в форме тепла, получаемого с дождем или от воздуха. Аккумулированное грунтом тепло отбирается либо вертикальным грунтовыми зондами, либо горизонтально проложенными грунтовыми коллекторами. Насосы этого типа также называют геотермальными тепловыми насосами. Преимущество – стабильность работы и самый высокий теплосъем среди всех типов тепловых насосов. Недостаток – относительно высокая стоимость буровых работ в случае геотермального теплового насоса и большая площадь для размещения горизонтальных грунтовых коллекторов (при потребности в тепле около 10 кВт и сухом глинистом грунте площадь коллектора должна быть не менее 450 м кв). Коэффициент мощности 3-5.

 

4. Эффективность применения теплового насоса

Можно сократить общий расход газа более чем в два раза, либо при наличии альтернативных источников электроэнергии отказаться от него вообще, то для конкретных объектов в настоящее время много зависит от тарифной политики государства, расположения, теплоизоляционных свойств объекта и т. д.

5. Сравнение текущих расходов на отопление для населения по состоянию на август 2008

  • Молдова 
    Тарифы: 1000 м. куб. газа -- 300 долл. США 
    1 квт.ч. электроэнергии -- 0,1 долл. США 
    Для обычного чугунного напольного котла с кпд = 0,82 из 1000 м. куб. газа получим: 
    1000 * 9,1 квт.ч. м. куб. * 0,82 = 7462 квт.ч. тепла 
    Для суперсовременного конденсационного котла с кпд = 1,05 -- 9555 квт.ч. тепла. 
    Для получения такого же количества тепла с помощью среднеэффективного универсального ТН нужно в первом случае: 
    7462 / 4,5 = 1658 квт.ч. электроэнергии стоимостью 166 долл. 
    во втором: 
    9555 / 4,5 = 2123 квт.ч., стоимостью 212 долл. 
    Уменьшение затрат по сравнению со стоимостью газа (300 долл.) соответственно: 
    (300 - 166) / 300 -- 45% 
    (300 - 212) / 300 -- 29%

  • США (Вермонт) 
    1000 м. куб. -- 350 долл. 
    1 квт.ч. электроэнергии -- 0,12 долл. 
    Экономия 27--43%.

  • Беларусь 
    1000 м. куб. -- 141 600 руб. = 66 долл. 
    1 квт.ч. электроэнергии -- 74,7 руб. = 0,0349 долл.

 
Это если использовать утвержденные 2007 г. во многих странах дифференцированные по времени тарифы, т.е. отключать ТН в периоды максимальных нагрузок энергосистемы с 8.00 по 11.00 и с 19.00 по 22.00, что реально с использованием аккумуляторов тепла. Экономия по сравнению с обычным газовым котлом – всего до 12%. Но это сегодня. Ситуация когда газ продается по 200-230$ не может продолжаться долго. Вероятно что-то подобное будет введено и в Молдове.

6. Капитальные затраты

Стоимость самого теплового насоса значительно выше стоимости газового котла, что впрочем не сильно изменит общую смету при новом строительстве приличного коттеджа. Цены практически сравниваются при необходимости строительства 200--300 м. газопровода. Если строится не временный фанерный домик, а капитальное строение для детей и внуков, будет некрасиво оставить им в наследство зависимость от давления в газовой трубе. Уж что-что, а электричество в стране будет всегда. А вот с газом могут возникнуть проблемы уже в ближайшем будущем. Знаменитый монополист Газпром, имеющий десятки миллиардов долларов долгов, не от хорошей жизни стремительно повышает цены на газ не только для ближайших союзников, но и для внутрироссийских потребителей. Просто не на что производить разведку и освоение новых месторождений, латать построенные еще при СССР трубопроводы. Особенно когда его основные доходы от экспорта газа в Европу через Украину тихо уплывают в неизвестном направлении через швейцарских учредителей фирмы-экспортера «УкрГазэнерго» и никого в Молдове это не волнует. Других же поставщиков у нас нет и не предвидится. Хотя.... посмотрим насколько "бесплатным" окажется новое Комратское месторождение на юге Молдовы. Может быть я ошибусь и нам дадут газ бесплатно.

7. Некоторые справочные данные

7.1. Справочные данные.

1. Прогноз цен на природный  газ:

Год

2008

2010

2016

2026

Цена долл.  
за 1000 м. куб.

250

350

450

700


 

 

  

2. Ориентировочная зависимость  необходимой теплопроизводительности  ТН от площади дома с хорошими  теплоизоляционными свойствами:

 

 

Площадь, м. кв.

100

150

200

250

300

350

Мощность ТН кВт.

5,0

8,0

12,0

16,0

21,0

28,0


 

 

  

В каждом конкретном случае производится индивидуальный расчет по теплопотерям здания. Для уменьшения капитальных затрат часто ТН используют в бивалентном режиме. Параллельно ему устанавливается, или при реконструкции оставляется дополнительный пиковый нагреватель на любом виде топлива, который включается в работу в самые холодные дни, каких у нас не так уж много. По данным Гидрометеоцентра усредненная температура по Молодовы для января - 4,8°С, для периода декабрь – февраль - 4,0°С. В самый холодный год за всю историю наблюдений (2006) она составила - 8,6 ... - 5,7°С в те же периоды. 
При таком подключении ТН может либо отключаться, если он становится неэффективным (например «воздух--вода» при больших отрицательных температурах наружного воздуха), либо работать

Информация о работе Расчет тепловых насосов