Тепловой расчет котла КВГМ-30-150

Автор работы: Пользователь скрыл имя, 19 Апреля 2013 в 19:53, курсовая работа

Описание работы

Котел КВ-ГМ-30-150 предназначен для установки в отопительных и промышленно-отопительных котельных в качестве основного источника теплоснабжения.
Конструкция котлоагрегата разработана с учетом максимальной степени заводской блочности и унификации деталей, элементов и узлов котлоагрегатов, работающих на различных видах топлива.
Котлы КВ-ГМ-30-150, выполненные по П-образной схеме, эксплуатируются, и выпуск их продолжается на Дорогобужском котельном заводе. Котел КВ-ГМ-30-150 поставляется заводом только для работы в основном отопительном режиме (вход воды осуществляется в нижний коллектор заднего топочного экрана, выход воды - из нижнего коллектора фронтового экрана).

Содержание работы

1. Описание котла КВ-ГМ-30-150 3
1.1 Технические характеристики котла КВ-ГМ-30-150 3
1.2 Конструктивные характеристики котла 5
1.3 Топочное устройство котла КВ-ГМ-30-150 6
1.4 Принцип работы 9
2. Тепловой расчет котла КВ-ГМ-30-150 10
2.1 Тепловой баланс котла и расход топлива 14
2.2 Расчет теплообмена в топке 16
2.3 Расчет конвективного пучка 19
2.4 Сводная таблица теплового расчета котла и расчетная невязка теплового баланса 22
3. Расчет фестона 24
4. Расчет экономайзера 29
Список литературы 2

Файлы: 1 файл

Тепловой расчет КВГМ 30-150.doc

— 596.00 Кб (Скачать файл)


Содержание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Описание  котла КВ-ГМ-30-150

 

    1. Технические характеристики котла КВ-ГМ-30-150

 

Котел КВ-ГМ-30-150 предназначен для установки в отопительных и промышленно-отопительных котельных в качестве основного источника теплоснабжения.

Конструкция котлоагрегата  разработана с учетом максимальной степени заводской блочности и унификации деталей, элементов и узлов котлоагрегатов, работающих на различных видах топлива.

Котлы КВ-ГМ-30-150, выполненные  по П-образной схеме, эксплуатируются, и выпуск их продолжается на Дорогобужском котельном заводе. Котел КВ-ГМ-30-150 поставляется заводом только для работы в основном отопительном режиме (вход воды осуществляется в нижний коллектор заднего топочного экрана, выход воды - из нижнего коллектора фронтового экрана).

Топочная камера имеет  горизонтальную компоновку. Конфигурация камеры в поперечном разрезе повторяет  профиль железнодорожного габарита. Конвективная поверхность нагрева расположена в вертикальной шахте с подъемным движением газов.

Котел КВ-ГМ-30-150 предназначен для сжигания газа и мазута. На фронтовой  стенке котла установлена одна газомазутная горелка с ротационной форсункой. Для удаления наружных отложений с конвективных поверхностей котел снабжен дробеочисткой.

Схема циркуляции: последовательное движение воды по поверхностям нагрева, вход - в нижний коллектор заднего топочного экрана, выход - из нижнего коллектора фронтового экрана.

Обмуровка надтрубная, несущего каркаса нет. Топочный и конвективный блоки имеют опоры, приваренные к нижним коллекторам котлоагрегата. Опоры на стыке топочного и конвективного блоков неподвижные.

Габаритные размеры  котла: длина - 11800 мм, ширина - 3200 мм, высота - 7300 мм.

Таблица 1.1.1 Технические характеристики котла КВ-ГМ-30-150

Наименование величины

Единица

измерения

Значение

Номинальная теплопроизводительность

Гкал/час

30

Расход воды

т/час

370

Расход топлива:

   

газ

м3/час

3680

мазут

кг/час

3490

Температура уходящих газов

   

газ

°С

160

мазут

°С

250

КПД при номинальной  нагрузке

   

на газе

%

91,2

на мазуте

%

87,7

Гидравлическое сопротивление  котла

кгс/м2

19000

Давление воды расчетное

кгс/см2

25

Видимое теплонапряжение  топочного объема

   

газ

ккал/м3 час

551´103

Мазут

ккал/м3 час

480´103


 

 

 

    1. Конструктивные характеристики котла

 

Топочная камера полностью  экранирована трубами диаметром 60´3 мм с шагом 64 мм. Экранные трубы привариваются непосредственно к камерам диаметром 219´10 мм. В задней части топочной камеры имеется промежуточная экранированная стенка, образующая камеру догорания. Экраны промежуточной стенки выполнены также из труб диаметром 60´3 мм, но установлены в два ряда с шагом S1 = 128 мм и S2 = 182 мм.

Конвективная поверхность  нагрева расположена в вертикальной шахте с полностью экранированными стенками. Задняя и передняя стены выполнены из труб диаметром 60´3 мм с шагом 64 мм.

Боковые стены экранированы вертикальными трубами диаметром 83´3,5 мм с шагом 128 мм. Эти трубы служат также стояками для труб конвективных пакетов, которые набираются из U-образных ширм из труб диаметром 28´3 мм.

Ширмы расставлены таким  образом, что трубы образуют шахматный  пучок с шагом S1 = 64 мм и S2 = 40 мм.

Передняя стена шахты, являющаяся одновременно задней стеной топки, выполнена цельносварной. В нижней части стены трубы разведены в четырехрядный фестон с шагом S1 = 256 мм и S2 = 180 мм.

Трубы, образующие переднюю, боковые и заднюю стены конвективной шахты, вварены непосредственно в камеры диаметром 219´10 мм.

 

Таблица 1.2.1. Конструктивные характеристики котла КВ-ГМ-30-150

Наименование величины

Единица

измерения

Значение

Глубина топочной камеры

мм

8484

Ширина топочной камеры

мм

2880

Глубина конвективной шахты

мм

2300

Ширина конвективной шахты

мм

2880

Ширина по обмуровке

мм

3200

Длина по обмуровке (с  горелкой)

мм

11800

Высота от уровня пола до верха обмуровки (оси коллектора)

мм

6680

Радиационная поверхность  нагрева

м2

126,9

Конвективная поверхность  нагрева

м2

592,6

Полная площадь поверхности  нагрева

м2

719,5

Масса в объеме поставки

кг

32400


 

    1. Топочное устройство котла КВ-ГМ-30-150

 

Котел снабжен газомазутной ротационной горелкой РГМГ-30. К достоинствам ротационных форсунок можно отнести бесшумность в работе, широкий диапазон регулирования, а также экономичность их эксплуатации, так как расход энергии на распыливание значительно ниже, чем при механическом, паровом или воздушном распыливании.

Основными узлам горелочного  устройства являются: ротационная форсунка, газовая часть периферийного типа, воздухонаправляющее устройство вторичного воздуха и воздуховод первичного воздуха.

Ротор форсунки представляет собой полый вал, на котором закреплены гайки-питатели и распыливающий стакан.

Ротор приводится в движение от асинхронного электродвигателя с  помощью клиноременной передачи. В передней части форсунок установлен завихритель первичного воздуха аксиального типа с профильными лопатками, установленными под углом 30°. Первичный воздух от вентилятора первичного воздуха подается к завихрителю через специальные окна в корпусе форсунки.

Воздухонаправляющее устройство вторичного воздуха состоит из воздушного короба, завихрителя аксиального типа с профильными лопатками, установленными под углом 40° и переднего кольца, образующего устье горелки. Газовая часть горелки периферийного типа состоит из газораспределяющей кольцевой камеры с однорядной системой газовыдающих отверстий одного диаметра и двух газоподводящих труб.

 

Таблица 1.3.1 Технические характеристики горелки РГМГ-30

Наименование величины

Единица

измерения

Значение

Номинальная теплопроизводительность

Гкал/час

30

Диапазон регулирования

%

10-100

Ротационная форсунка:

   

Диаметр распыливающего стакана

мм

200

Частота вращения стакана

об/мин

5000

Вязкость мазута перед  форсункой

°ВУ

8

Давление мазута перед  форсункой

кгс/см2

2

Электродвигатель:

   

Тип

-

АОЛ2-31-2М101

Мощность

кВт

3

Частота вращения

об/мин

2880

Автономный вентилятор первичного воздуха (форсуночный):

   

Тип

-

30 ЦС-85

Производительность

м3/час

3000

Давление воздуха

мм вод. ст.

850

Тип электродвигателя

-

АО-2-52-2

Мощность

кВт

13

Частота вращения

об/мин

3000

Аэродинамическое сопротивление  горелки по первичному воздуху не менее

кгс/см2

900

Температура первичного воздуха

°С

10-50

Диаметр патрубка первичного воздуха

мм

320

Воздухонаправляющее устройство вторичного воздуха:

   

Тип короба

-

С обычным прямым подводом воздуха

Ширина короба

мм

580

Сопротивление лопаточного  аппарата

кгс/см2

250

Газовая часть:

   

Тип газораздающей части

-

Периферийная с двусторонним подводом

Число газовыдающих отверстий

шт

21

Диаметр газовыдающих отверстий

мм

18

Сопротивление газовой  части

кгс/см2

3000-5000

Диаметр устья горелки

мм

725

Угол раскрытия амбразуры

°

60

Габаритные размеры

   

Диаметр присоединительного фланца

мм

1220

Длина

мм

1446

Высота

мм

1823

Масса

кг

869


 

    1. Принцип работы

 

Движение  дымовых газов. Дымовые газы, образуясь в топке котла, движутся в заднюю часть, где на поворотном экране завихряются и снизу через фестон заднего экрана топки входят в конвективную шахту, там поднимаются вверх, а затем по специальному газоходу опускаются к дымососу, идут в боров, в дымовую трубу и атмосферу. Тяга принудительная.

Циркуляция  воды принудительная. Обратная сетевая вода подается в котел и там последовательно проходит все поверхности нагрева, нагревается и снова идет в систему теплоснабжения. При работе на мазуте котлы по воде включаются по прямоточной схеме, вода подводится в поверхности нагрева топки, а отводится из конвективных поверхностей нагрева. При работе только на газообразном топливе включение котлов по воде выполняется по противоточной схеме, вода подводится в конвективные поверхности нагрева, а отводится из поверхностей нагрева топки.

Режимы работы:

- температурный  – 150-700С;

- теплофикационный  – основной;

- гидравлический  – в зависимости от протяженности  и сложности системы теплоснабжения.

Достоинства

  1. Высокоэкономичные – КПД при работе на газе до 92%.
  2. Конвейерная сборка.

Недостатки

1. Опасность  появления низкотемпературной сернистой коррозии при работе котлов на мазуте.

 

2. Тепловой  расчет котла КВ-ГМ-30-150

 

Исходные данные:

Топливо - природный газ, состав (%):

СН4 - 98.24

С2Н6 - 0.29

С3Н8 - 0.2

С4Н10 - 0.09

N2 - 1

2 - 0.14

=  35.8 МДж/м3

=  9.49 м33

 

Объемы продуктов сгорания газообразных топлив отличаются на величину объема воздуха и водяных паров, поступающих  в котел с избыточным воздухом.

Объемы, энтальпии воздуха и  продуктов сгорания определяют в расчете на 1 м3 газообразного топлива. Расчеты выполняют без учета химической и механической неполноты сгорания топлива.

 

Теоретические объемы продуктов сгорания вычисляем по формулам:

,    (1)

.

,     (2)

.

Объем водяных паров:

, ,    (3)

где d = 10 г/м3 - влагосодержание топлива, отнесенное к 1 м3 сухого газа при t = 10 °С.

.

Теоретический объем  дымовых газов:

,  (4)

.

Действительное количество воздуха, поступающего в топку, отличается от теоретически необходимого в α раз, где α – коэффициент избытка воздуха. Выбираем коэффициент избытка воздуха на входе в топку αт и присосы воздуха по газоходам Δα и находим расчетные коэффициенты избытка воздуха в газоходах α².

 

Таблица 2.1 Присосы воздуха  по газоходам Dα и расчетные коэффициенты избытка воздуха в газоходах α²

Участки газового тракта

α²

Топка

0,14

1,14

Конвективный пучок

0,06

1,2


 

Наличие присосов воздуха  приводит к тому, что объем продуктов сгорания будет отличаться от теоретического, поэтому необходимо рассчитать действительные объемы газов и объемные доли газов. Так как присосы воздуха не содержат трехатомных газов, то объем этих газов от коэффициента избытка воздуха не зависит и во всех газоходах остается постоянным и равным теоретическому.

 

Таблица 2.2 Характеристика продуктов сгорания в поверхностях нагрева

Величина

Единица

Топка,

Конвективный пучок

Коэф. избытка воздуха

1,14

1,2

м3/кг

8.979

9.6098

м3/кг

2,031

2,041

м3/кг

12,0092

12,65

0,0832

0,0789

0,169

0,161

0,2522

0,2399


 

Энтальпии теоретического объема воздуха и продуктов сгорания, отнесенные к 1 м3 сжигаемого топлива при температуре u, °С, рассчитывают по формулам:

, (5)

, (6)

где , , , - удельные энтальпии воздуха, трехатомных газов, азота и водяных паров соответственно.

Энтальпию продуктов  сгорания на 1 м3 топлива при a > 1 рассчитываем по формуле:

.    (7)

Результаты расчетов по определению энтальпий при  различных температурах газов сводим в таблицу:

 

Таблица 2.3 Определение энтальпии продуктов сгорания в газоходах котла

u, °С

I0в=V0 × (ct)в

IRO2 = VRO2 ×(cν)RO2

I0N2 =

= V0N2 × (cν)N2

I0H2O =

= V0H2O × (cν)H2O

I0г = IRO2 +

+ I0N2 + I0H2O

30

379,4

-

-

-

379,4

100

973,0

175,76

1001

329,18

1505,9

200

2588,1

371,28

2002

662,7

3036

300

3921,1

581,36

3018,4

1009,4

4609,1

400

5273,6

802,88

4057,9

1364,6

6225,4

500

6655,3

1035,8

5112,8

1730,9

7879,5

600

8075,9

1270,88

6190,8

2108,8

9569,7

700

9525,6

1519,44

7284,2

2500,4

11304,1

800

10994,9

1772,1

8416

2910,3

13098,5

900

12464,1

2029,04

9571,04

3322,3

14922,4

1000

13972,2

2290,1

10733,8

3760,5

16784,3

1100

15519,3

2555,2

11896,5

4198,6

18650,4

1200

17066,4

2825,6

13051,5

4645,5

20522,9

1400

20199,4

3369,6

15469,6

5576,4

24415,3

1600

23381,0

3917,68

17877,10

6542,1

28346,2

1800

26553,1

4475,12

20343,4

7338,4

32356,9

2000

29812,7

5036,72

22822,8

8558,7

36416,2

2200

33072,2

5602,48

25333,0

9589,8

40525,3

Информация о работе Тепловой расчет котла КВГМ-30-150