Вопросы для самоподготовки к зачетам и экзаменам по материаловедению

Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 19:51, Не определен

Описание работы

Шпоргалки

Файлы: 6 файлов

Вопросы.doc

— 32.50 Кб (Просмотреть файл, Скачать файл)

16-30матвед.doc

— 1.62 Мб (Скачать файл)

Правило отрезков.

Посредством правила отрезков можно определить состав фаз в любой двухфазной области и количественное их соотношение. Правило отрезков состоит из двух частей. Первая часть: для того чтобы определить состав фаз через заданную точку в двухфазной области (точка соответствует конкретной температуре) проводят горизонтальную линию до пересечения с линиями, ограничивающими эту область. Проекция точек пересечения на ось концентрации даст нам состав фаз. Вторая часть: для того чтобы определить количество фаз через заданную точку проводят горизонтальную линию до пересечения с линией, ограничивающей эту область. Отрезки между заданной точкой и точками с соответствующим составом фаз обратно    пропорциональны их количеству.   Правило фаз действует только в двухфазной области.   

16.Диаграмма состояния сплава с неограниченной растворимостью компонентов в твердом состоянии. Дендритная ликвация.

Диаграммы состояния показывают изменения  фазового состояния сплавов при изменении их состава и температуры, а также позволяют предсказывать свойства сплавов. Связь между составом сплава и его свойствами для различных типов диаграмм состояния впервые была установлена Н. С. Курнаковым и получила название закономерностей Курнакова.

При изоморфности кристаллических решеток, близости строения валентных электронных оболочек атомов и малой разнице в размерах атомов в твердом состоянии элементы образуют неограниченные твердые растворы.

 

Диаграммы состояния и зависимость свойств  от состава для случаев:

а), б) неограниченной растворимости компонентов в твердом состоянии;

в), г) отсутствия растворимости компонентов в  твердом состоянии;

д), е) ограниченной растворимости компонентов в  твердом состоянии. 

Верхняя линия на диаграмме состояния  представляет собой геометрическое место точек начала кристаллизации или конца плавления - линию ликвидус. Выше этой линии все сплавы находятся в однофазном - жидком состоянии. Нижняя линия является геометрическим местом точек конца кристаллизации или начала плавления - линия солидус. Ниже этой линии все сплавы также в однофазном - твердом состоянии.

Когда компоненты полностью не растворяются друг в  друге в твердом состоянии  и растворимы в жидком состоянии, показана на рис. в). В данном случае линия ликвидус выглядит в виде ломаной, причем при некотором составе, называемом эвтектическим (от греческого слова эвтектикос - легкоплавкий), линия ликвидус касается линии солидус. Линия солидус представляет собой горизонтальную линию. Ниже линии солидус в сплава имеется две твердые фазы, являющиеся чистыми компонентами сплава. Поскольку компоненты не растворимы друг в друге, то свойства линейно меняются при изменении состава в соответствии с тем, как меняется количество фаз. Однако вблизи эвтектического состава наблюдается отклонение от линейного закона. Это связано с тем, что при кристаллизации эвтектических сплавов из жидкости одновременно выпадают две твердые фазы, и формируется мелкозернистая структура. Измельчение зерен ведет за собой увеличение электрического сопротивления и прочности эвтектических сплавов.

Ликвация  – хим неоднородность состава в различных частях слитка. Дендритная ликвация - .хим неоднородность в пределах каждого дендрита.( В центре кристалла больше всего содержится твердых компонентов.Это измененим сотава внутри кристалла и наз дендритн ликв) Устраняется термообраб-кой и диффузионным отжигом (гомоденизация). 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 

17. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой

Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвтектикой и диаграммы с перитектикой.

Диаграммы с эвтектикой: компоненты А и В. Фазы: жидкость a,b;a- твердый раствор компонента В в компоненте А;b - твердый раствор компонента А в компоненте В.

Линия АВС – ликвидус. ADCFB – солидус, т.к.  компоненты вступают во взаимодействие в твердом состоянии с правой  и с левой стороны диаграммы будут находиться так называемые области ограниченной растворимости.

Линия ДК- указывает на то, что растворимость  компонента  В в А  увеличивается с повышением температуры. Растворимость В в А при комп. Температуре будет соответственна на диаграммы. При температуре плавления эвтектики точка Д на диаграмме. Противоположность растворимость компонента А в В не изменяется (линия FL) при комнатной температуре растворимость компонента   А в В соответственна точке L при температуре плавления эвтектики в точке  L. Горизонтальная линия DCF соответствует температуре, при которой происходит эвтектическая реакция.

Эвтектика – это механическая смесь двух или более фаз одновременно кристаллизующихся из жидкости. В точке С происходит чисто эвтектическая реакция, которая записывается как жидкость точки С распадается на a - твердый раствор точки Д и b - в точке F.

Кривые охлаждения. 

      С=К-Ф+1

      С0-1=2-1+1=2 С1-2=2-2+1=1

Диаграмма с перлитом.

Компоненты  А,В, жидкост, a,b.

В отличие  от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.

Диаграммы состояния  и зависимость свойств от состава  для случаев: а), б) неограниченной растворимости  компонентов в твердом состоянии;

в), г) отсутствия растворимости компонентов в  твердом состоянии;

д), е) ограниченной растворимости компонентов в твердом состоянии

Для систем сплавов с ограниченной растворимостью характерны диаграммы состояния, показанные на рис. д). В таких системах имеются две области существования фаз, представляющих раствор одного компонента в другом, и область существования смеси двух фаз. При составах, соответствующих областям существования  твердых растворов на основе какого-либо компонента, изменения свойств аналогично изменению свойств в системах с неограниченной растворимостью компонентов, а в областях составов, соответствующих двухфазным смесям, изменение состава ведет к изменению свойств, характерному для систем с нерастворимыми в твердом состоянии компонентами

-------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 

18.Диаграмма состояния сплавов, компоненты которых имеют полиморфные превращения. 

19.Связь между типом диаграммы состояния и свойствами сплава.

Строение  сплава определяет его св-ва,поэтому важно знать как будет изменяться строение при изменении температуры и состава сплава. Зависимость между структурой сплава,его составом и температурой определяется с помощью диаграммы состояния. Т.е. Диаграмма состояния (д.с.) представляет собой графическое изображение состояния сплава, показывает устойчивое состояние, (т.е. состояние ,которое при данных условиях имеет минимум свободной энергии,поэтому д.с наз-ют еще диаграммой равновесия. По д.с. можно определить для конкретного сплава температуру кристаллизации и превращений в твердом состоянии при заданной темп-ре, что позволяет примерно определить механические, физич и др свойства сплава; и справедливо назначить режимы т.о.(термоообраб),ОМ2,сваркой и т.д. Д.с. строятся по критическим точкам,полученным на кривых охлаждения сплавов данной системы. Критические точки при етом стараются получить при оч медленном нагреве или охлаждении,т.е. почти в равновесном состоянии.

-------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20.Упругая и пластическая деформация. Механизмы пластической деформации.Под воздействием приложенных из вне нагрузок металлы могут деформироваться в упругой области (без остаточных явлений), а именно без изменения размеров и деформироваться пластически, когда изменяется форма и размеры деформируемого металла.

 Упругая деформация характеризуется двумя  модулями: модуль Гука (модуль нормальной упругости) и модуль Юнга (модуль касательной  упругости). В модуле Гука атомы стремятся по нормали, во втором случае – по касательной.

 Естественно, учитывая силы межатомного взаимодействия, модуль Гука будет в несколько  раз больше модуля Юнга и они не являются структурно-чувствительными  свойствами.

 Пластическая  деформация может проходить по двум механизмам: скольжения и двойникования.

 При реализации механизма скольжения часть  кристалла смещается  по отношению к другой под воздействием напряжений, превышающих критическую величину.

  При чем это скольжение осуществляется по так называемым плоскостям скольжения. Каковыми являются плоскости наиболее упакованные атомами.

 Деформация  по механизму двойникования заключается  в смещении одной части кристаллов в зеркальное отражение по отношению к другой по, так называемым, плоскостям двойникования. Точнее в этом случае смещение происходит за счет разворота части кристаллической решетки.

  Деформация двойникования также  как и скольжения осуществляется при прохождении дислокации через кристалл. Практически любой металл деформируется сразу по двум механизмам с преобладанием какого-либо одного.

-------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21. Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.

Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.

 Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=a*Tпл , а=0,2…0,6.

Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.

-------------------------------------------------------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22. Деформационное упрочнение поликристаллов. 
 

23.Компоненты,фазы и структурные составляющие в системе Fe-C (Fe-Fe3C)

выше  линии АБСД-жидкость, Ф – феррит, А-аустенит, Ц – цементит, П –  перлит, Л – ледобурит (эвтектика,А+Ц,при  низк температурах П+Ц). Компонента 2: жидкость + С, L+ Ц;

фазы: L, Ф, А, Ц, графит, П – эвтектоид (Ф+Ц,перлит) 
Вид линий диаграммы Fe-C зависит от типа образующихся в процессе кристаллизации фаз и от того,какие превращения происходят при охлаждении твердого сплава. Поск-ку С обладает способностью в атомарном виде размещаться в крист решетке железа, то при затвердевании расплава могут образовываться твердые растворы внедрения на основе решеток  2х высокотемпературных  модификаций железа: δ-Fe, (гамма) γ- Fe . Если углерода меньше 0,5 %,то в начале из расплава кристализ-ся δ – твердый раствор, который при последующем охлаждении перекристализ-ся в γ-тверд раствор. В сплавах, содержащих больше 0,5 % ,но меньше 4,3 %, из расплава сразу кристалл-ся γ-тверд раствор. Поскольку он так же как и δ – твердый раствор не может существовать при низких температурах,то γ-тверд раствор при охлаждении превращается  в твердый раствор α (альфа). Т.о. сплавы железа с углеродом могут существовать кристаллы 3х тверд растворов: δ,γ и α, образующихся на основе 3х аллотропических модификаций чистого железа. Алоферрит тверд наз-ся ферритом и содержит больше 0,025 % углерода при темп 727 градусов. По своим св-вам он близок к чистому железу. γ-тверд раствор наз-ся аустенитом и он может содержать в себе до 2,14 % углерода. Помимо тверд раст-ров железа и углерода образуется тверд хим соед-ния Fe3C – карбид железа (цементит).
 

вопросы 31-45.doc

— 165.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Вопросы для самоподготовки к зачетам и экзаменам по материаловедению