Вопросы для самоподготовки к зачетам и экзаменам по материаловедению

Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 19:51, Не определен

Описание работы

Шпоргалки

Файлы: 6 файлов

Вопросы.doc

— 32.50 Кб (Просмотреть файл, Скачать файл)

16-30матвед.doc

— 1.62 Мб (Просмотреть файл, Скачать файл)

вопросы 31-45.doc

— 165.00 Кб (Просмотреть файл, Скачать файл)

45-57.doc

— 81.50 Кб (Скачать файл)

46.Основы  легирования стали.  Взаимодействие легирующих  элементов с железом и углеродом. Влияние легирующих элементов на устойчивость аустенита и феррита.

Легирующие элементы вводятся в сталь для получения  требуемой структуры и свойств. Почти все элементы растворяются в железе и влияют на положение точек А3 и А4.По влиянию делятся на 2 группы:1) понижают температуру точки А3, повышают А4.Расширяется область γ-фазы и сужается α-фазы. Сплавы наз аустенитными, если при всех температурах твердый раствор легирующего элемента в γ-железе и не испытывают фазовых превращений. Частично претерпевающие превращение – полуастенитные. 2)понижают А4 и повышают А3. Интервалы точек А1 и А3 сливаются, область γ-фазы полностью замыкается. Сплавы, сост из твердово легирующего элемента в α-железе, наз ферритными. Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость А. С-образные кривые смещаются вправо, тем самым сниж. критич. скорость закалки. Это улучш. закаливаемость и прокаливаемость стали, так действуют все легир. эл-ты, кроме кобальта. При содерж. в Fe 20% Cr, она способна закаливаться на М. В сталях в кот. содерж. легир. эл-тов <2,5% наз. низколегир.; 2,5-10% - легир.; >10% - высоколегир. В низколегир. сталях обычно содерж. каждого легир. эл-та всегда <1%, хотя он и показан в марке стали. Молибдена 0,15-0,4%; вольфрама 0,5-1,2%; ванадия 0,06-0,3%; Ti 0,03-0,09%; бора 0,002-0,005%; ниобия 0,02-0,05%; азота 0,015-0,025%. Все легир. эл-ты, кроме марганца, уменьш. склонность А зерна к росту. Избыточные карбиды не растворимые в А препятствуют росту зерна А, поэтому сталь при наличии хотя бы небольшого кол-ва не растворимых карбидов сохран. мелкозернист. строение до высоких тем-тур. Легир. эл-ты замедляют процесс распада М.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

57.Медь  и ее сплавы.

Концентрация  меди в земной коре 0,01%, в рудах  в среднем 5%.Это металл красно-розового цвета без полиморфных превращений. Температура плавления 1083 град. Прочность 160 НПА. После прокатки и прессования 240 НПА. Высокая пластичность, теплопроводность, что обуславливает широкое применение. Медь – основа латуни и бронзы. Недостатки – высокий удельный вес, вязкость, низкая текучесть.

Латуни: 1)двойные (простые); 2) многокомпонентные (легированные). 1)  маркируются «Л» и процентное содержание меди. Л96, Л85, Л80, Л62, Л59.

Чем больше цинка, чем дешевле, он повышает прочность  и пластичность.Л70 содержит 90% меди, имеет золотой цвет, применяется для золотых изделий. Если 90 и более % меди, то наз ТОМПАК, если 80-85, то ПОЛУТОМАПАК. В маркировке также пишут легирующие

элементы (Al–A, Ni-H, Be-Б,Р-Ф, олово-О,Si-K, Mn-Mц, Be-Б, Zn-Ц) и за буквой количество каждого элемента.

Бронзы: сплавы Cu c Al,Cn,гелием и т.д. Оловянные

бронзы не обрабатываются давлением и применяются в  литом состоянии БРО10Ф1.

Алюминиевые бронзы имеют высокие механические, антикоррозийные, антифрикционные свойства, более  дешевые. Могут работать до температуры 400-500гр. До 3% Si. Хорошо паяются, свариваются. Бериллиевые бронзы – сплавы, которые упрочнятся термообработкой. После закалки прочность 450 НПА. Упрочняется при последующем старении, обладает хорошими упругими свойствами. БРБ2 – изготовление пружин, мембран, обработка резаньем, сваркой, сопротивляется коррозии. Свинцовые бронзы обладают хорошими антифрикционными  свойствами. БРЦ30 для подшипников скольжения, работают при больших нагрузках, имеют высокую теплопроводность.

Маркировка деформированные бронзы: БР, затем легирующие элементы (все буквы, потом процентное содержание) БРОФ-4-0,25. Литейные бронзы: процентное содержание после каждой буквы БРО6Ц6С3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

52.Интрументальнве  стали и твердые  сплавы.

Интрум стали – углеродистые и легированные стали, обладающие высокой твердостью 63-65 HRC, красностойкостью(теплостойкостью) – способностью не уменьшать свою твердость при повышении температуры. Обычно это стали, состоящие из мартенсита и избыточных карбидов после закалки и низкого отпуска. Они делятся на:

1.легированные  и углеродистые стали с небольшим  содержанием легирующих элементов  и не обладающих теплостойкостью,  работают до 200град. У7…У13,Х,ХВГ (Г-марганец),В1,ХГ2М.

2.легированные  стали, содержащие до 18% легирующих элементов. Теплостойкость 400-500град. Х12,Х12М,Х12М2, 5ХНВ,5ХГМ,5ХНТ и др.

3.теплостойкие, высоколегированные стали ледебуритного  класса, содержащие V,Cr,Co,Mo и др. Теплостойкость 600-650град. Быстрорежущие маркируются «Р». Р18,Р9К5,Р6М5К5,4К5В2ФС,

4К8В2,3К7В7. Все

 быстрорежущие стали содержат 4% Cr, но он не обозначен.

По назначению:

1.для режущих  инструментов (должны иметь высокую  твердость режущей кромки, для  изготовления используются все  3 вида) 2.для штампа холодной деформации 3.для штампа горячей деформации  4.для измерительных инструментов и деталей высокой прочности, требующих износостойкости и стабильности. Обрабатываются ТМО, состоящей из закалки и последующего многократного отпуска, бладоря чему повышается твердость. Иногда подвергается дополнительной обработке: низкотемпературное азотирование, цианирование, обработка высокотемпературным паром.

Твердые растворы – металлокерамические материалы, изготовленные порошковым методом. Твердость 87-92 HRC. Сплавы, используемые в промышленности делятся на:

1.вольфрамовые  ВК8,ВК3,ВК6

2.окись вольфрама,  титана, кобальта.Т15К6,Т30К4,Т15К10

3.карбиды Ti,Co,V,Ta. ТТ8К6.

В конце «В»(крупный  порошок), «М» мелкий. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

53.Коррозионная  стойкость.

Коррозия –  самопроизвольное разрушение материалов вследствие химического или электрохимического взаимодействия с окружающей средой. В результате взаимодействия с такой средой механические свойства материала резко падают, иногда при отсутствии видимого изменения внешней поверхности. Химическая – при воздействии на металл газом (газовая), неэлектролитом (нефть, нефтепродукты). Электрохимическая – в жидких электролитах (влажная атмосфера, почва, морская и речная вода, водные растворы солей, щелочей и кислот). В электролит помещаются 2 различных  металла, получается гармоническая пара, при этом

металл, который  легче, анод (отдает электроны). Он

постепенно разрушается. Пары возникают между различными фазами, анод – границы зерен. Чем больше границы зерен, тем быстрее разрушение. По характеру разрушений различают местную и равномерную коррозию. Местная: контактна, межкристаллитная (разрушение по границам зерен), точечная.

Стали, устойчивые к электрохимической коррозии, наз  коррозионностойкие (нержавеющие). Устойчивые в газовой коррозии – окаленностойкие. Повышение устойчивости стали к коррозии достигается введением элементов, образующих на поверхности защитную пленку, прочно сцепленную с основным металлом, которая предупреждает контакт стали с агрессивной средой и повышает электрохимический потенциал стали в различных средах. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

48. Обозначение марок  легир. сталей. Их  клас-ция. 

1. по равновесной  структуре: 1.1.доэвтектоид. стали  (в структуре избыточн. Ф);

1.2.эвтектоидн. (П); 1.3.заэвтект. (избыточн. вторичн. легир.  карбиды); 1.4.ледебуритные (первичн. карбиды выделившиеся при кристаллиз. из жидк. стали – кристаллы). По структуре Л должен быть отнесен к чугунам. В легир. сталях при меньшем содерж. углерода выделяется Л. В чугунах Л не деформируется, он очень хрупкий, в легир. сталях он деформируется, поэтому стали с Л более хрупкие. В некот. легир. сталях углерода м.б. >2,14%. 2. по структуре после охлажден. на воздухе: 2.1. перлитная; 2.2. мартенситная; 2.3. аустенитная. Эта классификация предложена французом Гийе. Немец Обер Дерфер предложил другую клас-цию. По нему структура м.б.: П; М; А; Ф; карбидная (Л); бенитная; Ф-М; А-Ф; А-М.

3. по составу: 3.1. никелевые; 3.2. хромистые; 3.3. хромоникелевые; 3.4. хромоникелемолибденовые и т.д. 4. по назначению: 4.1. конструкционные;  4.2. инструментальные; 4.3. стали и сплавы с особыми св-вами (нержавеющие, жаростойкие, жаропрочные, эл.-технич. и т.д.). Если в стали легир. элементов >50%, то это сплав на основе Fe. Наличие легир. элементов оговаривается в марке стали. Для этого приняты условные обозначения: это или первые буквы названия элемента, или наиболее звучащие буквы, или не то и не другое. H-Ni; X-Cr; B-вольфрам; M-молибден; Т-титан; Д-Cu; Ф–ванадий; Е–селен; Ч–редкоземельные эл-ты; Р-бор; К-кобальт; А-азот; Ю-Al; Б-ниобий; Г-Mg; С-кремний. Кроме того для обозначения некоторых групп прим. др. условные обознач., при этом эти условные обозначения ставятся впереди марки: Е-эл.-технич. стали для пост. магнитов; Ж-нержавейка Перлит класса; Я-нержавейка Ауст класса; Р-быстрорежущ. стали; У-углеродистые инструментальные стали; Э-эл.-технич. стали; ЭИ-экспериментально-исследовательские; ЭП-экспериментально-пробные. Пример: 12Х18Н10Т; 30ХГСА. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

54.Хромистые  и хромоникелевые  стали.Хром должен быть растворен в стали. Если он образует карбиды, то сталь ржавеет. Для предотвращения в сталь добавляют Ti,Ta. В 20Х13, 40Х13, 95Х18 имеют мартенситную структуру. 12Х15 мартенситно-ферритную, 12Х17 ферритную.ТМО мартенситного класса состоит из закалки под температурой 1000град и низкого отпуска при 200-300град (режущие, инструментальные, пружины, предметы домашнего обихода). Стали мартенсит-ферритн и ферритн классов: закалка и высоки отпуск, чтоб получить сорбитную структуру (для деталей с высокой пластичностью). Некоторые стали (12Х17, 15Х25Т) подвергаются только для получения равновесной структуры с целью повышения прочности (пищевая промышленность). Сварка ферритных сталей не производится, так как при этом интенсивно растет зерно и износостойкость падает. На ряду с хромистыми применяются стали с 18% Cr и 9-12% Ni. Стали имеют аустенитную структуру. Коррозионная стойкость больше, они более пластичные, хорошо свариваются. Широко распространена 12Х18Н10Т, 0,4Х18Н10. ТМО: закалка 1000-1150град без отпуска. Никель очень дорогой, поэтому часть его или весь никель заменяют марганцом. Вместо 12Х18Н10Т используют 10Х14ГН4Т. Также используются стали аустенитно-мартенситного и аустенитно-ферритного классов.Стали А-М класса имеют высокий предел прочности и хорошо свариваются (0,9Х15Н8Ю).Стали  А-Ф класса имеют высокий предел прочности, но не выдерживают работу в серной и хлорной кислотах. Тогда используются сплавы на основе Fe и Ni: 0,4ХН40МдТЮ. Этот сплав содержит 14-17% Cr b 1,5-6% Mo. Закалка 1050-1100град и последующее старение при 600-700град, при котором выделяется упрочнительная γ-фаза. Широко применяется сплав ХН65МВ, который работает при повышенных температурах в солянокислых и сернокислых средах. Также применяются двухслойные сплавы. При этом наружный слой изготовлен из низколегированной или углеродистой стали, а второй из коррозионностойких сталей. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

47. Влияние легир.  эл-тов.

Все легир. эл-ты упрочняют сталь. Часто наряду с повыш. прочности, повыш. пластичность, наприм. легир. Ni. Легир. эл-ты измен. кинетику распада А, сниж. скорость диффузии при всех тем-рах стали, поэтому увелич. устойчивость А. С-образные кривые смещаются вправо, тем самым сниж. критич. скорость закалки. Это улучш. закаливаемость и прокаливаемость стали, так действуют все легир. эл-ты, кроме кобальта. Все легир. эл-ты сниж. тем-ный интервал М превращения, поэтому малоуглеродист. стали, кот. обычно не закаливаются на М, в присутствии легир. эл-тов становятся способными закаливаться. При содерж. в Fe 20% Cr, она способна закаливаться на М. В сталях в кот. содерж. легир. эл-тов <2,5% наз. низколегир.; 2,5-10% - легир.; >10% - высоколегир. В низколегир. сталях обычно содерж. каждого легир. эл-та всегда <1%, хотя он и показан в марке стали. Молибдена 0,15-0,4%; вольфрама 0,5-1,2%; ванадия 0,06-0,3%; Ti 0,03-0,09%; бора 0,002-0,005%; ниобия 0,02-0,05%; азота 0,015-0,025%. Все легир. эл-ты, кроме марганца, уменьш. склонность А зерна к росту. Избыточные карбиды не растворимые в А препятствуют росту зерна А, поэтому сталь при наличии хотя бы небольшого кол-ва не растворимых карбидов сохран. мелкозернист. строение до высоких тем-тур. Легир. эл-ты замедляют процесс распада М. Это связано с тем что процессы при отпуске имеют диффузионный хар-тер, а большинство легир. эл-тов замедляют процесс карбидного превращения особенно на стадии коагуляции. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

51. Конструкционные цементуемые и улучшаемые легир стали.

Цементуемые  стали. Для изготовления деталей упрочняемых цементацией и нитроцементацией применяют низколегированные стали с содержанием 0,15-0,25 реже до 0,3% С. Содержание легирующих элементов не должно быть слишком большим, но должно обеспечить прокаливаемость поверхностного слоя и сердцевины. Прокаливаемость сердцевины должна обеспечить высокие механические свойства, особенно пределы текучести и твердости. При циклических нагрузках цементуемых и нитроцементуемых деталей, сопротивление их разрушения зависит от прочности сердцевины. Для получения высокой прочности и сопротивлению хрупкому разрушению используется непосредственно закалка после цементации, но стали должны быть наследственно мелкозернистыми. Увеличение зерна в цементованном слое после термообработки (т/о) уменьшает контактную прочность,  предел выносливости при изгибе. Для измельчения зерна в стали, ее микролегируют ванадием, Ti, ниобием, цирконием, Br, N в результате чего образуется прочные, дисперсные нитриты, карбиды, корбонитриды, бориды. Все цементуемые стали делятся на три группы: 1) Сталь 10, 15, 20 - с неупрочняемой сердцевиной, применяют при незначительных нагрузках; 2) Сталь 15Х, 20Х, 15ХР, 20ХН – низколегированные стали со слабо упрочняемой сердцевиной; 3) Сталь 20ХГР, 20ХНР, 18ХГТ, 30ХГТ, 18ХНМФ, 25ХГНМАЮ – относительно более высоколегир стали с сердцевиной сильно упрочняемой т/о также называют высокопрочные цементуемые стали. Улучшаемые стали. Содержат 0,3-0,5% С и разное кол-во легир эл-ов: хром, Ni, молибден, вольфрам, марганец, кремний в сумме не более 3-5% и часто около 0,1% измельчителей. Т/о: закалка + высокий отпуск. Делятся на 5 групп. По мере увеличения номера группы растет степень легир и прокаливаемость. 1) Сталь 40, 45 критический Æ10 мм, прим для неответст деталей 2) Сталь 40Х, 40ХР - крит Æ25-35 мм. Эти стали использ для изготов коленч валов, осей, зуб кол, работающих на износ без значительных ударных нагрузок, 3) Сталь 30ХМ, 40ХГ, 40ХГР - крит Æ 35-40 мм. Стали с достаточно высокой прочностью и прокаливаемостью, имеют пониженную вязкость и повышенные порог холодноломкости. 4) Сталь 40ХН, 40ХНР, 40ХГНР, 40ХНМ - крит Æ 50-75 мм. Имеют более высокую прокаливаемость, высокую прочность и вязкость. Их использ для изготовления деталей сложной конфигурации, работающих при вибрационных и динамических нагрузках. 5) 30ХН2ВФ, 38ХН3МФ - крит Æ > 100 мм. Высокая прокаливаемость и прочность. Из за присутствия в стали водорода образ флокины, котор обнаруж после прокатки в виде тонких трещин овальной или округлой формы, имеющих в изломе тип пятен в виде хлопьев серебристого цвета. Они резко ухудшают свойства сталей. Используют в наиболее ответственных деталях. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Вопросы для самоподготовки к зачетам и экзаменам по материаловедению