Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 19:51, Не определен
Шпоргалки
Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.
В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).
При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.
Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.
Изменение стр-ры при дорекристаллизационном отжиге.
Пластическая
деф-ция приводит к переводу металлов
в неравновесное состояние, т.е. с повышенным
запасом свободной энергии. Как и любая
другая сис-ма металл стремиться к уменьшению
свободной энергии. Это уменьшение протекает
тем интенсивнее, чем выше тем-ра. В зав-ти
от тем-ры отжига различают процессы возврата
и процессы рекристаллизации.
11. Возврат, полигонизация, рекристаллизация металлов и сплавов.
Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: низкотемпературную (отдых) и высокотемпературную. (полигонизация).
В процессе отдыха происходит перераспределение точечных дефектов. Перемещаются по кристаллу и дислокации, однако эти перемещения носят локальный хар-р. Дислокации различного знака встречаясь друг с другом взаимно аннигилируют, т.е. взаимоуничтожаются. Рез-ом этого являются некоторые снижения плотности дислокации. В процессе полигонизации происходит перемещение дислокации по кристаллу. Дислокации перемещ-ся хаотич. по объёму кристалла. Под воздействием тем-ры дислокации перемещаясь концентрир-ся в определённых участках стр-ры с образованием стенок и т.наз. полигонов.
После полигонизации происходит некоторый возврат св-в к св-вам металла до деф-ции.
Рекристаллизация.
После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.
При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.
От размера
зерна вообще и после рекристаллиз
отжига в частности зависят св-ва металла.
Чем мельче зерно, тем выше механические
св-ва. Чем крупнее зерно, тем ниже мех-кие
св-ва, но выше магн. или электр. св-ва. Поэтому,
например, трансформаторную сталь после
холодной деф-ции подвергают рекрист.
отжигу с тем, чтобы как можно больший
размер зерна можно было получить.
12. Строение сплавов. Система, компонент, фаза.
Сплав – макроскопическое однородное тело, состоящее из двух или нескольких веществ, обладающих характерными свойствами, присущими металлическому состоянию.
Сплавом называют результат сплавления двух или более компонентов. Компоненты – вещества, входящие в состав сплава. В качестве компонентов могут быть как чистые элементы, так и химические соединения. Компоненты, находящиеся в состоянии физико-химического взаимодействия образуют термодинамическую систему, при этом в системе возникают как жидкие, так и твердые фазы. Фаза – однородная часть термодинамической системы, одинаковая по всем свойствам, независящим от массы. Фазы отделены друг от друга поверхностью раздела, при переходе через которую состав и свойства меняются скачкообразно. Система может быть гомогенной и состоять лишь из одной фазы, или гетерогенной, если состоит их 2 или нескольких фаз. Система может быть 1, 2-х и многокомпонентной (сталь = железо, углерод). Компоненты могут входить во все или в отдельные фазы и могут перераспределяться из одной фазы в другую при определенных условиях. Если это положение действительно для всех компонентов и в отношении всех фаз, то система равновесна. Некоторые металлы могут неограниченно распространяться друг в друге в жидком состоянии. При образовании сплавов из компонентов, растворенных друг в друге в жидком состоянии возможны следующие случаи:
1) при сплавлении
компонентов с большим
2) компоненты
сплава в твердом состоянии
в любой пропорции ( или не
в любой) растворяются друг
в друге, тогда образуется
3) Компоненты
при определенном соотношении
образуют соединения, кристаллическая
решетка которых отличается от
крист. решетки исходных
13. понятие о гетерогенной структуре, твердом растворе и химическом соединении. Виды твердых растворов.
1) при сплавлении
компонентов с большим
2) компоненты
сплава в твердом состоянии
в любой пропорции ( или не
в любой) растворяются друг
в друге, тогда образуется
3) Компоненты при определенном соотношении образуют соединения, кристаллическая решетка которых отличается от крист. решетки исходных компонентов. Эти соединения химического типа называют интерметаллическими соединениями или промежуточными фазами.
Твердые растворы – твердые однородные кристаллические фазы переменного состава, состоящие из двух или более числа компонентов, сохраняющих однородность при изменении соотношения между этими компонентами. В этих фазах атомы различных компонентов образуют общие кристаллические решетки, свойственную растворителю. Между химическими элементами могут образовываться твердые растворы 2-х типов: замещения и внедрения.
Тв. растворы замещения образуются в том случае, когда в кристаллической решетке одного компонента атомы замещаются на атомы другого компонента.
Твердые растворы замещения подразделяют на растворы неорганической и органической растворимости.
1) Основной металл, атомы в котором замещаются, называется растворителем.
2) Растворенный компонент.
Для того, чтобы получить твердый раствор неорганической растворимости замещаются атомы растворенного компонента. Необходимо выполнение трех условий:
а) Кристаллические
решетки обоих компонентов
б) Разница в атомных радиусах не должна превышать 14 или 15 %
в) Сплавляемые компоненты должны находиться в одной части периодической таблицы.
Невыполнение
хотя бы одного из условий приводит
к образованию твердых растворов ограниченной
растворимости. К растворам, в которых
атомы кристаллической решетки растворителя
частично замещаются атомами растворимого
компонента.
Твердые растворы внедрения образуются, когда атомы одного компонента внедряются в пустоты или дефекты другого компонента. Такое возможно лишь в случае большого различия в атомных радиусах компонента. Твердые растворы внедрения образуют металлы с углеродом, азотом и твердые растворы замещения.
Твердые растворы вычитания.
Они образуются
на базе хим. соединений при недостатке
атомом одного из компонентов. Отдельные
узлы кристаллической решетки
Промежуточные фазы или интерметаллические соединения:
1) упорядоченные
твердые растворы или
2) фазы Лависа;
3) электронные соединения;
4)фаза внедрения;
Упорядоченные твердые растворы – это растворы, когда при определенных стехиометрических соотношениях имеет место упорядочение, т.е атомы занимают строго определенное место в кристаллической решетке; при упорядочении меняются параметры решетки.
Фаза Лависа – характеризуется тем, что образуются соединения типа АВ2. В зависимости от вида соединений один и тот же элемент может играть роль А или В (MgCu2, CuBe2), соотношение радиусов Ra/Rb=1, 223.
Электронные соединения – фазы переменного состава, образуются между элементами из следующих групп: с одной стороны- медь, серебро, золото, железо, кобальт, никель, палладий, платина, а с другой стороны – бериллий, цинк, кадмий, олово, кремний. Определенное соотношение валентных электронов: 7/4, 3/2, 21/13.
Фазы
внедрения –
соединения неметаллические, с переходными
металлами. Состав описывается следующими
формулами: Ме4Х, Ме3Х, Ме2Х, МеХ, МеХ2.
14. Правило фаз Гиббса и правило отрезков.
Состояние сплава зависит от внешних условий (температуры и давления) и характеризуется числом и концентрацией образовавшихся фаз. Закономерность изменения числа фаз в гетерогенных системах определяется правилом Гиббса. Правило фаз устанавливает зависимость между числом степени свободы, числом компонентов и числом фаз. С = К + 2 – Ф, где к – число компонентов, с – число степеней свободы, ф –число фаз, 2 – внешние факторы, т.е. изменяющаяся температура и давление, для сплавов принята несколько иная форма зависимости с = к -ф + 1 при условии постоянства давления. Под числом степени свободы понимают зависимость изменения температуры, давления и концентрации без изменения числа фаз, находящихся в равновесии.
Если С =0, то система безвариантна, то, очевидно, нельзя изменять внешние и внутренние факторы системы без того, чтобы это не вызвало изменения числа фаз. Если С = 1 – моновариантная система, то возможны изменения одного из перечисленного фактора (давления или темп), и это не вызовет изменения числа фаз. При С = 2 система бивариантная. Имея диаграмму состояния, можно проследить за фазовым превращением любого состава и указать состав и конечное соотношение фаз при любой температуре при помощи двух простых правил:
Информация о работе Вопросы для самоподготовки к зачетам и экзаменам по материаловедению