Автор работы: Пользователь скрыл имя, 16 Марта 2011 в 22:55, доклад
Процессы изотермического деформирования отличаются от обычных, традиционных способов горячей штамповки тем, что формоизменение нагретой заготовки осуществляют в инструменте, нагревом до температуры деформации. Термин «изотермическое деформирование» отражает условия процесса, а не температуру штампуемого металла, которая в процессе деформирования будет повышаться вследствие теплового эффекта деформации.
ИЗОТЕРМИЧЕСКАЯ ШТАМПОВКА
Сущность и возможности изотермической штамповки
Процессы изотермического деформирования отличаются от обычных, традиционных способов горячей штамповки тем, что формоизменение нагретой заготовки осуществляют в инструменте, нагревом до температуры деформации. Термин «изотермическое деформирование» отражает условия процесса, а не температуру штампуемого металла, которая в процессе деформирования будет повышаться вследствие теплового эффекта деформации.
Практическое осуществление процесса изотермического деформирования стало возможным благодаря развитию металлургии конструкционных сплавов с высокой жаропрочностью, которые можно использовать в качестве штамповых материалов, работающих в условиях высоких температур.
Изотермические условия можно создать в специальных штамповых блоках, позволяющих со сравнительно небольшими затратами энергии нагревать инструмент до температуры деформации. Штамповыми материалами служат литейные жаропрочные сплавы на никелевой основе. Заготовки нагревают в автономном нагревателе или непосредственно в штамповом блоке.
Изотермическая штамповка металлов и сплавов имеет преимущества по сравнению с обычной штамповкой. В изотермических условиях скорость деформирования значительно меньше, чем при обычной штамповке. Это позволяет проводить штамповку при меньшем сопротивлении металла деформированию и, соответственно, меньшем усилии. Кроме этого, при изотермической штамповке удается достичь более равномерной деформации штампуемого металла.
Важным преимуществом изотермического деформирования является повышение пластичности обрабатываемого материала, что связано с более полным разупрочнением, а также «залечиванием» микротрещин вследствие диффузии в металле при пониженных скоростях деформации. Это позволяет получать в изотермических условиях детали сложной формы с тонкими элементами и ребрами.
При построении чертежа поковки возможно назначение меньших по величине припусков на последующую механическую обработку, а также штамповочных уклонов и радиусов закругления по сравнению с обычной штамповкой.
Последние
два преимущества изотермической штамповки
способствуют разработке более рациональных
технологий штамповки деталей из
металлов и сплавов, в том числе
и алюминиевых.
Установки, оборудование и инструмент
Специфика горячего деформирования в изотермических условиях предъявляет особые требования к конструкции и материалам штамповой оснастки и деформирующему оборудованию. Для практического осуществления изотермической штамповки необходимо обеспечить:
Специальные установки для изотермического деформирования включают:
Основным элементом установки является монтируемый на пресс штамповый блок с нагревательным устройством. Конструктивное исполнение штампового блока и используемые средства нагрева могут быть различными.
В рабочей зоне
пресса применяют специальные
Первый тип
блоков применяют, как правило, при
обработке материалов, требующих
высокой температуры
В качестве нагревательных элементов могут использоваться как индукторы, так и элементы сопротивления.
При использовании индуктора, последний навивают вокруг инструмента в один или два слоя. Материал индуктора - медь (М1, М2). Сечение индуктора сплошное круглое или квадратное (прямоугольное). Индуктор охлаждается водой, которая проходит внутри медной трубки.
Индукторы имеют межвитковую изоляцию в виде намотанной на трубку киперной ленты, пропитанной шеллачным лаком. К индукторам подводится ток промышленной частоты (50 Гц) через понижающие трансформаторы. На выводных концах индукторов приварены клеммы для подключения токопроводов и штуцеров для подсоединения шлангов системы водяного охлаждения.
Штампы
и штамподержатели
Для предотвращения нагрева ползуна и стола пресса нижнюю и верхнюю опорные плиты охлаждают водой. В плитах предусмотрены специальные пазы для змеевиков из трубки прямоугольного сечения. От стола и ползуна пресса опорные плиты изолированы асбоцементными плитами.
Контроль и регулирование температуры рабочей зоны проводятся с помощью термопары, которую присоединяют к штамповому инструменту. Температура рабочей зоны поддерживается постоянной с точностью ±15°С. Время нагрева зависит от массы нагреваемого металла и температуры. Для штампового блока со штамподержателями диаметром 250 мм время нагрева до температуры 900°С составляет около 5 ч.
Для ориентировочного расчета потребной мощности, необходимой для нагрева рабочего пространства штампового блока с индукционными нагревателями можно использовать формулу
где G - масса нагреваемого металла, кг; сср - средняя удельная теплоемкость нагреваемого металла, ккал/кг; Т1 - требуемая температура нагрева инструмента, °С; Т2 - температура металла перед нагревом, °С; t - время нагрева, ч; h - к.п.д. нагревательного устройства с учетом тепловых и электрических потерь, h=0.35¸0.4.
В качестве деформирующего оборудования для изотермической штамповки используют, как правило, гидравлические прессы. Габаритные размеры рабочего пространства пресса должны быть достаточными для размещения штампового блока установки, а открытая высота должна позволять заменять инструмент без демонтажа блока с пресса. Желательно, чтобы пресс имел устройство для регулирования скорости рабочего хода ползуна, а также для выдержки ползуна под давлением, что необходимо для установления оптимального режима деформации.
индукционные нагревательные печи
Электропечи обладают существенными преимуществами по сравнению с топливными печами: обеспечивают большие скорости нагрева и высокую производительность, легкость и точность регулировки теплового режима, возможность нагрева отдельных участков изделия, легкость герметизации и возможность нагрева в вакууме, лучшие условия труда, более высокий КПД (отсутствуют потери с выходящими газами). Основным недостатком таких печей является большая стоимость электроэнергии по сравнению со стоимостью топлива. Условия теплообмена в рабочем пространстве электропечей определяются способом преобразования электрической энергии в тепловую.
В
индукционных печах нагрев происходит
за счет выделения теплоты
Применение индукционного нагрева взамен нагрева в печах сопротивления позволяет:
– быстро выводить печь на рабочую температуру;
– исключает простои, связанные с перегоранием нагревательного элемента;
– обеспечивает энергосбережение при одно- и двусменной работе;
– обеспечивает равномерную температуру заготовки.
Индукционный нагрев позволяет эффективно и быстро нагревать проводящие материалы (металлы, графит др.), за счёт наведения в них вихревых токов. Устройство, с помощью которого в нагреваемом теле наводятся вихревые токи, называется индуктором. К индуктору может быть подведено напряжение промышленной или повышенной (средней, высокой) частоты. От частоты подведённого к индуктору напряжения зависит коэффициент полезного действия и глубина одновременно нагреваемого слоя металла. Наиболее эффективен нагрев на повышенных частотах.
Постоянно
расширяющееся многообразие технологий,
в которых применяется
Сегодня
индукционный нагрев занимает доминирующее
положение в ряде технологий, вытеснив
другие виды нагрева. Например, литейные
участки большинства
Конструкция печи
Индукционные
нагревательные установки в настоящее
время становятся неотъемлемой частью
многих технологических процессов обработки
черных и цветных металлов, что определяет
разнообразие их конструкций.
Рис. 1.
Схемы индукционных нагревательных установок
с проходными индукторами разного поперечного
сечения: а – круглого; б – квадратного;
в - овального; г
– щелевого
Для нагрева заготовок по всей длине применяют соленоидные многовитковые проходные индукторы круглого, квадратного или прямоугольного сечения (рис. 1, а и б), для местного нагрева концов длинных заготовок (прутки, трубы) – овальные и щелевые (рис. 1, в и а), для нагрева пластин и лент – овальные, для нагрева кольцевых заготовок (бандажи колес) – индукторы с замкнутым магнитопроводом аналогично принципу работы индукционных канальных печей, при нагреве листового материала – индукторы с поперечным магнитным полем.
В индукционных нагревательных установках заготовки перемещают толкателем с кривошипным (в кузнечных нагревателях типа КИН-К), реечным, гидравлическим или пневматическим приводом (типа КИН-П), «шагающей» направляющей при возвратно-поступательном ее перемещении внутри индуктора от кулачкового механизма (в кузнечных нагревателях типа КИН-Ш); длинные стальные заготовки перемещают приводными «магнитными» роликами (с постоянными магнитами), немагнитные – роликовыми протяжными механизмами, когда ролики устанавливают между секциями длинного индуктора. [2]
Нагрев
алюминиевых слитков перед
Нагрев
заготовок в установке
Информация о работе Сущность и возможности изотермической штамповки