Шпаргалка по "Материаловедение"

Автор работы: Пользователь скрыл имя, 11 Декабря 2017 в 00:15, шпаргалка

Описание работы

1 Общая характеристика металлов: свойства, классификация, кристаллическое строение.
Металлы – это химические элементы, атомы которых легко отдают электроны внешнего (а некоторые и предвнешнего) электронного слоя, превращаясьвположительныеионы.
Типичными металлами являются щелочные и щелочноземельные металлы, которые характеризуются небольшим (1-2) числом электронов на внешнем уровне их атомов и легкостью потери электронов, что отражает низкие значения электроотрицательности.

Файлы: 1 файл

материаловедение.docx

— 337.01 Кб (Скачать файл)

6.Механические свойства металлов.

Основные механические свойства

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность - способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность - способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость - способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки - 500 . . . 600 НВ.

Ударная вязкость - способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС(Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость - способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а квызванной им упругой деформации. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Механические свойства металлов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

7.Основы теория сплавов

Основы теории сплавов

Чистые металлы находят довольно ограниченное применение в качестве конструкционных материалов. Основными конструкционными материалами являются сплавы. Они обладают более ценными комплексами механических, физических и технологических свойств, чем чистые металлы.

Сплавом называют вещество, полученное сплавлением двух или более элементов (компонентов).

Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называют металлическим сплавом. Металлические сплавы можно также получать методами порошковой металлургии (спеканием), диффузией, осаждением нескольких элементов на катоде при электролизе водных растворов.

К основным понятиям в теории сплавов относятся система, компонент, фаза.

Система - группа тел, выделяемых для наблюдений и изучения. В металловедении системами являются металлы и металлические сплавы.

Компонентами называют вещества, образующие систему, взятые в наименьшем количестве. В металлических сплавах компонентами могут быть элементы (металлы и неметаллы) и химические соединения (не диссоциирующие при нагревании). Чистые компоненты обозначаются прописными буквами латинского алфавита А, В, С, Д.

Фазой называется однородная часть системы, отделенная от другой части системы поверхностью раздела, при переходе через которую состав, строение и свойства изменяются скачком.

Сплавы могут быть однофазными, двухфазными, трехфазными.

В зависимости от физико-химического взаимодействия компонентов могут образовываться следующие фазы: жидкие растворы, твердые растворы и химические соединения.

Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях. В результате образуется однородный жидкий раствор с равномерным распределением атомов одного металла среди атомов другого металла.

Твердые растворы - это фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры.

Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

В зависимости от характера распределения атомов элемента различают твердые растворы внедрения, замещения и вычитания.

В твердых растворах внедрения атомы растворимого элемента распределяются в кристаллической решетке металла-растворителя, занимая места между его атомами. Разместиться в таких пустотах могут только атомы с очень малыми размерами. Наименьшие размеры атомов имеют некоторые металлоиды и водород, азот, углерод, бор, которые и образуют с металлами твердые растворы внедрения.

В твердых растворах замещения атомы растворимого элемента занимают места атомов основного металла. Посторонние атомы могут замещать атомы растворителя в любых местах, поэтому такие растворы называют неупорядоченными твердыми растворами.

Твердые растворы замещения могут быть ограниченной и неограниченной растворимости. Так, в алюминии может растворяться до 5,5 % меди, в меди - до 39% цинка. Неограниченной растворимостью обладают, например, компоненты систем: Сu-Ni, Cu-Au, Ag-Au, Cu-Pt, Fe-Cr, Fe-Ni. Для образования твердых растворов неограниченной растворимости должны выполняться следующие условия: компоненты должны иметь одинаковые по типу кристаллические решетки; различие в атомных размерах компонентов должно быть незначительным и не превышать 8...15 % (например, Аg и Cu - DR = 0,2%, Сu и Ni - DR = 2,7 %); компоненты должны принадлежать к одной и той же группе периодичной системы или смежной родственной группе и иметь в атомах близкое строение валентной оболочки электронов.

В некоторых сплавах с понижением температуры в твердых растворах замещения может произойти процесс перераспределения атомов, в результате которого атомы растворенного элемента займут строго определенные места в решетке растворителя. Такие твердые растворы называют упорядоченными, а их структуру - сверхструктурой. Температуру перехода в упорядоченное состояние называют ”точкой Курнакова”. Полностью упорядоченные растворы образуются, когда отношение компонентов в сплаве равно целому числу: 1:1, 1:2, 1:3 и т.д. В этом случае сплаву можно приписать формулу химического соединения, например, CuAu, Cu3Au. Их можно рассматривать как промежуточные фазы между твердыми растворами и химическими соединениями. В отличие от химического соединения сохраняется решетка растворителя, и при нагреве выше точки Курнакова степень упорядочения постепенно уменьшается и они становятся неупорядоченными. Упорядоченные твердые растворы характеризуются большей твердостью, прочностью, меньшей пластичностью и электросопротивлением.

Твердые растворы вычитания образуются на основе некоторых химических соединений, когда к этому химическому соединению добавляется один из входящих в его формулу элементов. Атомы этого элемента занимают нормальные положения в решетке соединения, а места, где должны были бы находиться атомы второго компонента, оказываются незаполненными, пустыми. Такие твердые растворы образуются, например, при сплавлении химического соединения NiAl с Аl, карбида титана ТiС с Тi, когда FeО растворяет кислород.

Твердые растворы принято обозначать строчными буквами греческого алфавита a, b, g, d.

Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Они обычно образуются элементами, имеющими большое различие в электронном строении атомов и кристаллических решетках.

Характерные особенности химических соединений:

  1. кристаллическая решетка отличается от решеток компонентов, образующих соединение;

  1. сохраняется простое кратное соотношение компонентов в виде АnВm;

  1. свойства соединения резко отличаются от свойств образующих его компонентов;

  1. температура плавления (диссоциации) постоянная.

Образование химического соединения сопровождается значительным тепловым эффектом.

Соединения одних металлов с другими называются интерметаллидами. Связь между атомами в интерметаллидах чаще металлическая. Примером являются соединения Мg2Sn, Мg2Pb.

При образовании химического соединения металла с неметаллом возникает ионная связь, например, в соединении NaCl.

Переходные металлы (Fe, Mn, Cr, Mo, W, V и др.) образуют с углеродом карбиды, с азотом нитриды, с бором бориды, с водородом гидриды (железо гидридов не образует) Они имеют общность строения и свойств и называются фазами внедрения. Они имеют формулы: МХ (WC, VC, TiC, NbC, TiN, VN, и др.); М2Х (W2C, Mo2C, Fe2N и др.); М4 Х (Fe4N, Mn4N и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (Rx) и металла (Rм). Если Rx/Rм < 0,59, то атомы металла в этих фазах расположены по типу одной из простых кристаллических решеток: кубической (К8, К12) или гексагональной (Г12), в которую внедряются атомы неметалла, занимая в ней определенные поры.

Если это условие не выполняется, как это наблюдается для карбида железа, марганца и хрома, то образуются соединения с более сложными решетками, и такие соединения нельзя считать фазами внедрения.

Многие фазы внедрения обладают высокой прочностью, твердостью и их часто применяют в сталях для получения повышенной прочности (стали с дисперсионным упрочнением).

Кроме того, к химическим соединениям относятся электронные соединения и фазы Лавеса (АВ2),например, MgZn2, MgCu2, CaAl2.

Электронные соединения чаще образуются между одновалентными (Сu, Ag, Au, Li, Na) металлами или металлами переходных групп (Fe, Mn, Co и др.) с одной стороны и простыми с валентностью от 2 до 5 (Вe, Mg, Zn, Cd, Al и др.).

8.Диаграммы состояния сплавов. Правило фаз. Правило отрезков.

Теория

Сплав- это вещество, полученное сплавлением нескольких химических элементов (в нашем случае - двух).

Химические элементы, оставляющие сплав, называются его компонентами. В общем виде будем их обозначать А и В.

Для одних и тех же компонентов множество сплавов, отличающихся только концентрацией компонентов, составляют систему сплавов, которую принято именовать по перечню компонентов. Например, сплавы системы А - В - это множество сплавов из компонентов А и В, отличающихся содержанием А и В. Поскольку в двойных сплавах суммарная концентрация компонентов составляет 100%:

%А + %В= 100%,

то любой конкретный сплав системы А - В принято указывать содержанием в нем компонента В (например: сплав, содержащий 10% В).

Внутри сплава его компоненты распределены в общем случае неравномерно (сплав - не просто смесь компонентов), они находятся внутри различных структурных и фазовых составляющих. Свойства сплава полностью определяются его внутренними составляющими (фазовым составом, структурой), которые можно определить путем анализа диаграммы состояний.

Диаграмма состояния сплавов системы А - В - это графическое изображение возможных фазовых и структурных состояний любых сплавов системы А - В при любых температурах. Диаграммы состояний изображаются в координатах: температура - хим. состав сплава. В нашем случае хим. состав любого сплава однозначно задается указанием содержания в нем компонента В. Таким образом, координаты диаграммы состояний: температура сплава - содержание в нем компонента В.

Вид диаграммы состояния полностью определяется характером физико-химического взаимодействия его компонентов между собой. Будем в дальнейшем рассматривать лишь такие сплавы, которые могут быть полностью расплавлены. Тогда можно считать, что при достаточно высоких температурах любые сплавы представляют собой однородный жидкий раствор компонентов, который на всех диаграммах будем обозначать через L (жидкость).

В твердом состоянии компоненты внутри сплава могут в общем случае взаимодействовать следующим образом:

1)химически реагировать  друг с другом с образованием  нового вещества –химического соединенияAmBn:

А + В = AmBn;

2)растворяться в кристаллической  решетке друг друга полностью  либо частично, при этом образуются твёрдые растворы(например, твердый раствор А в В);

3)образовывать легкоплавкую  механическую смесь, которая называется эвтектикой. 
Важнейшими элементами внутреннего строения любых сплавов являются его фазовые составляющие (или короче - фазы).

Фаза- это однородная (иногда - очень малая по размерам) часть сплава, отделенная от других частей границей раздела, при переходе которой наблюдается скачок физико-механических свойств вещества.

В соответствии с этим определением в общем случае фазами в сплавах могут быть:

1)компоненты А, В;

2)жидкий раствор компонентов - жидкость L;

3)твердые растворы компонентов  друг в друге - а, β.

4)химические соединения  AmBn.

Следует, обратить внимание, что механическая смесь неоднородна, следовательно, эвтектика - не фаза! (Это смесь нескольких фаз).

Каждой фазе, существование которой возможно в сплавах системы А - В, на диаграмме состояний этой системы соответствует однофазная область, то есть область температур и составов, при которых фаза способна существовать с присущими ей физическими свойствами.

При проведении анализа диаграммы состояний необходимо сначала по характерным линиям диаграммы определить вид взаимодействия компонентов в сплавах данной системы, затем выявить однофазные области на диаграмме. После этого с помощью правила отрезков (см. ниже) определить фазовый состав сплавов в остальных (двухфазных) областях диаграммы состояний и, на конец, построением кривых охлаждения для конкретных сплавов системы определить возможные структуры сплавов в охлажденном состоянии. 

Правило отрезков

Правило отрезков служит для определения:

1)фазового состава сплава  в заданной точке диаграммы  состояния;

2)химического состава  фаз, имеющихся в сплаве;

3)весовой доли каждой  фазы

С этой целью, вначале из заданной точки на диаграмме состояния необходимо провести отрезок горизонтали влево и вправо до пересечения с границами ближайших однофазных областей, а затем на этом отрезке необходимо определить все точки его контакта (т.е.

Информация о работе Шпаргалка по "Материаловедение"