Автор работы: Пользователь скрыл имя, 11 Декабря 2017 в 00:15, шпаргалка
1 Общая характеристика металлов: свойства, классификация, кристаллическое строение.
Металлы – это химические элементы, атомы которых легко отдают электроны внешнего (а некоторые и предвнешнего) электронного слоя, превращаясьвположительныеионы.
Типичными металлами являются щелочные и щелочноземельные металлы, которые характеризуются небольшим (1-2) числом электронов на внешнем уровне их атомов и легкостью потери электронов, что отражает низкие значения электроотрицательности.
Основными типами кристаллических решеток являются:
2 Строение реальных кристаллов, дефекты строения.
Локальные несовершенства (дефекты) в строении кристаллов присущи всем металлам. Эти нарушения идеальной структуры твердых тел оказывают существенное влияние на их физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упрочнение и разрушение сплавов и др.
Дефекты кристаллического строения удобно классифицировать по их геометрической форме и размерам:
1) точечные (нульмерные) малы во всех трех измерениях, их размеры не больше нескольких атомных диаметров - это вакансии, межузельные атомы, примесные атомы;
2) линейные (одномерные) малы в двух
направлениях, а в третьем направлении
они соизмеримы с длиной
3) поверхностные (двумерные) малы только в одном направлении и имеют плоскую форму - это границы зерен, блоков и двойников, границы доменов;
4) объемные (трехмерные) имеют во
всех трех измерениях
Точечные дефекты - это вакансии, т. е. узлы решетки, в которых атомы отсутствуют в результате их перехода на поверхность кристалла, или атомы, внедрившиеся в межузлие решетки. Вышедший из равновесного положения атом называют дислоцированным, а оставшееся пустое место в узле решетки - вакансией.
Вакансии и дислоцированные атомы вызывают искажение решетки, распространяющееся примерно на пять параметров.
Дислоцированный атом и вакансии непрерывно перемещаются по решетке вследствие неравномерного распределения энергии между атомами. Количество такого рода дефектов очень велико, например, в 1 см³ кадмия при температуре 300 °С наблюдается 10¹³ вакансий, а время существования вакансии всего лишь 0,0004 с.
Перемещаясь беспорядочно по кристаллической решетке, вакансии встречаются и скапливаются, образуя другой вид дефектов решетки, который называется дислокация и относится уже к линейным дефектам. Наиболее распространены дислокации двух типов: линейные или краевые и винтовые или спиральные. Дислокации можно легко представить путем смещения одной части кристалла по отношению к другой, но не по всей плоскости, а только по ее части. При этом часть соседних атомов в плоскости смещается по отношению к своим соседям, а часть плоскости остается без нарушения взаимного расположения атомов.
В случае линейной дислокации сдвиг происходит по плоской поверхности, а в случае винтовой дислокации сдвиг идет по винтовой поверхности. Величина единичного смещения плоскостей характеризуется вектором Бюргере b, который отражает как абсолютную величину сдвига, так и его направление (правая и левая винтовая дислокация, положительная и отрицательная краевая дислокация). Чистые металлы получить технически очень трудно и по этой причине в металле присутствуют примеси различного происхождения. В зависимости от природы примесей и условий попадания их в металл они могут быть растворены в металле или находиться в виде отдельных включений. На свойства металла наибольшее влияние оказывают чужеродные растворенные примеси, атомы которых могут располагаться в пустотах между атомами основного металла (атомы внедрения) или в узлах кристаллической решетки основного металла (атомы замещения). Если атомы примесей значительно меньше атомов основного металла, то они образуют растворы внедрения, а если больше - то образуют растворы замещения . В том и другом случаях решетка становится дефектной и искажения ее влияют на свойства металла. Наличие дислокаций и несовершенство кристаллов, с одной стороны, оказывают ослабляющий эффект на металл, а при определенных условиях дефекты могут упрочнять металл. Упрочняющий эффект обусловлен взаимодействием дислокаций друг с другом и с различными несовершенствами кристаллического строения. Сущность процесса упрочнения состоит в торможении дислокаций, создании препятствий для их перемещения.
Взаимодействие дислокаций многообразно и сложно. Они могут взаимодействовать в одной или разных плоскостях, иметь одноименный или разноименный знак, но если искажение решетки в результате их взаимодействия увеличивается, то возрастает сопротивление деформации кристалла. Поверхностные дефекты наблюдаются прежде всего на границах зерен.
Граница зерен - это поверхность, по обе стороны от которой кристаллические решетки различаются пространственной ориентацией . Эта поверхность является двумерным дефектом, имеющим значительные размеры в двух измерениях, а в третьем - его размер соизмерим с атомным. Границы зерен - это области высокой дислокационной плотности и несогласованности строения граничащих кристаллов. Атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерен и, как следствие этого, более склонны вступать в различные взаимодействия и реакции. На границах зерен отсутствует упорядоченное расположение атомов. Каждое из зерен металла состоит из отдельных фрагментов, а последние - из блоков, образующих мозаичную структуру. Зерна металла взаимно разориентированы на несколько градусов, фрагменты разориентированы на минуты, а блоки, составляющие фрагмент, взаимно разориентированы всего лишь на несколько секунд. На границах зерен в процессе кристаллизации металла скапливаются различные примеси, образуются дефекты, неметаллические включения, оксидные пленки. В результате металлическая связь между зернами нарушается и прочность металла снижается. Состояние границ зерен металла оказывает большое влияние на их свойства.
Рис. 3.6. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения
При переходе метала из жидкого состояния в кристаллическое образуются кристаллы. Процесс этот называется кристаллизацией. Металл стремиться перейти в термодинамически более устойчивое состояние с меньшей свободной энергией.
F - изменение свободной энергии системы.
На кривой охлаждения полученной при кристаллизации металла в момент появления 1-го кристалла в жидкости температура стабилизировалась. Площадка на кривой охлаждения имеет место до тех пор, пока последняя капля жидкости не исчезнет. Последующее охлаждение осуществляется уже в твердом состоянии за счет конвективного теплообмена.
Пластическое деформирование металлов и сплавов имеет очень большое значение в технике, так как подавляющую часть их, особенно стали, обрабатывают давлением. Важнейшие технологические процессы обработки металлов давлением, такие как ковка, штамповка, прокатка, прессование, волочение и др., основаны на способности металлов получать под действием внешней силы остаточные пластические деформации, обеспечивающие необходимые размеры и форму заготовок и изделий. Процесс пластической деформации также является основой обработки металлов резанием. Способность металлов пластически деформироваться имеет большое значение и для обеспечения надежности и долговечности работы изделий. Если способность металла изделий к пластической деформации мала, то в таких изделиях в процессе работы может скорее произойти хрупкое разрушение.
Одновременно с изменением размеров и формы в пластически деформируемом изделии изменяются структура и свойства. Это дает возможность использовать пластическое деформирование как технологическую операцию, изменяющую в желательном направлении структуру и свойства металлов и сплавов. Особое значение пластическое деформирование приобретает в том случае, когда металлы и сплавы не имеют фазовых превращений в твердом состоянии и путем термической обработки нельзя изменить их структуру и свойства (например, для легированных аустенитных и ферритных сталей).
Пластическая деформация протекает не только под действием внешней силы, но и под влиянием внутренних фазовых превращений, сопровождающихся объемными изменениями (внутрифазовый наклеп). Внутрифазовый наклеп оказывает влияние на структуру и существенно отражается на формировании свойств при термической обработке металлов и сплавов.
5 Наклеп и рекристаллизация металлов и сплавов.
На рис. 6 показано, как под действием приложенной нагрузки зерна, из которых состоят все технические металлы, начинают деформироваться и вытягиваться, сохраняя свой объем. Это структурно неустойчивое состояние. Кроме того, внутри каждого зерна и по его границам сосредотачивается большое количество дислокаций, плотность которых возрастает. То есть, кристаллическая решетка зерен становится искаженной, несовершенной. С увеличением степени деформации наклеп увеличивается, а пластичность уменьшается, что приводит при большой степени деформации к возникновению трещин и разрушению.
Если Тр определяют по изменению твердости, то за Тр принимают температуру, при которой прирост твердости, созданный деформацией, уменьшается вдвое (см. рис. 8).
|
Холодная деформация – деформация металла, которая осуществляется при температуре ниже температуры рекристаллизации. При холодной деформации увеличивается плотность дислокаций, зерна вытягиваются в направлении деформации, увеличивается прочность металла и снижается пластичность.