Автор работы: Пользователь скрыл имя, 09 Марта 2011 в 12:29, реферат
Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.
Введение……………………………………………………………2
1. Общий обзор методов определения витаминов…………………3
2. Хроматографические методы определения витаминов…………5
3. Электрохимические методы определения витаминов…………10
4. Инверсионно вольтамперометрический метод определения
водорасторимых витаминов B1 B2 в пищевых продуктах………..13
Заключение………………………………………………………...18
Содержание:
стр:
Введение…………………………………………………………
1. Общий обзор
методов определения витаминов…
2. Хроматографические
методы определения витаминов……
3. Электрохимические
методы определения витаминов……
4. Инверсионно
вольтамперометрический метод
водорасторимых витаминов B1 B2 в пищевых продуктах………..13
Заключение……………………………………………………
Введение
В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.
Для
определения витаминов
1. Общий обзор методов определения витаминов
Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.
Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556—81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.
Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22—80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.
Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира — кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.
В
продуктах питания и напитках
рибофлавин присутствует в связанном
состоянии, т. е. в форме фосфорных
эфиров, связанных с белком. Чтобы
определить количество рибофлавина в
продуктах, необходимо освободить его
из связанного состояния путем кислотного
гидролиза и обработки ферментными препаратами.
Витамин B1 в безалкогольных напитках рассчитывают
с помощью химического метода для определения
количества легкогидролизуемых и прочно
связанных форм рибофлавина в тканях.
Метод основан на способности рибофлавина
к флюоресценции до и после восстановления
его гипосульфитом натрия. Определение
общего содержания фенольных соединений.
Для этого используют колориметрический
метод Фолина — Дениса, который основан
на образовании голубых комплексов при
восстановлении вольфрамовой кислоты
под действием полифенолов с реагентом
в щелочной среде. Фенольные соединения
определяют по хлорогеновой кислоте методом
пламенной фотометрии на приборе ЕКФ-2.
2. Хроматографические методы определения витаминов
В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии. Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.
Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом , кизельгелем
Метод
газовой хроматографии
Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб , ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- [81] и масс-спектроскопический детекторы.
Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.
Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.
Преимущества метода жидкостной хроматографии:
-Одновременное определение нескольких компонентов
-Устранение влияния мешающих компонентов
- Комплекс можно быстро перестроить на выполнение других анализов.
Состав
и характеристика оборудования и
программного обеспечения для жидкостного
хроматографа "Хромос ЖХ-301":
Таблица 1
|
Достоинства хроматографа "Хромос ЖХ-301":
-высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.
-легкий доступ к колонкам обеспечивается конструкцией прибора.
-эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.
-широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.
Хроматограмма анализа водорастворимых витаминов:
1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).
Хроматограмма
анализа жирорастворимых
1. Витамин А
2. токол
3. y -токоферол
4. a -токоферол (Витамин E)
5. лютеин
6. зеаксантин
7. криптоксантин
8. a -каротин
Несмотря
на высокую чувствительность метода
ВЭЖХ, высокая стоимость приборов, а также
длительность анализа с учетом времени
пробоподготовки существенно ограничивает
его применение в аналитических лабораториях
нашей страны.
3. Электрохимические методы определения витаминов
Электрохимические методы анализа широко используются в аналитической практике благодаря простоте, надежности, экспрессности, возможности определять практически все элементы периодической системы, разнообразные неорганические и органические соединения в широком диапазоне концентраций. Наибольшее развитие электрохимические методы получили в последние годы за счет использования электронной аппаратуры, компьютеров, разработке новых электродов и способов их очистки, позволяющих применять электрохимию на различных стадиях исследования. В настоящее время электрохимические методы анализа успешно применяются и для определения витаминов.
Публикации по определению витамина Е электрохимическими методами немногочисленны. Потенциометрическое и амперометрическое титрование хлорным золотом находит ограниченное применение из-за малой специфичности, т.к. хлорное золото не обладает способностью окислять эфиры токоферолов и другие производные. Для определения суммы токоферолов в их концентратах предложен метод амперометрического титрования в среде 1н. раствора серной кислоты в 75% этаноле раствором сульфата церия (IV) с помощью платинового электрода. Анализ токоферолов в этаноле и хлороформе с использованием ферроцианид иона в качестве медиатора проводили методом кулонометрии .